File size: 1,400 Bytes
4814d33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pickle
import json
import pandas as pd
import gradio as gr

ct_load = pickle.load(open('ct.pkl', 'rb'))
xgb_load = pickle.load(open('xgb_classifier.pkl', 'rb'))
label_name_list = ['1', '2', '3']

one_data_str = '{"Box_type": "光分箱", "Scenes": "【光分】箱体缺盖", "OBD_number": 1, "ONU_number": 1, "Budget": 440.0, "Average_price": 440.0, "Low_light_obd_number": 0, "Low_light_onu_number": 0, "Low_light_frequency": 0, "Low_light_ratio": 0.0, "Is_low_ligh_over_25": "否", "Is_low_ligh_over_5_users": "否", "Is_obd_all_low_light": "否", "break_off_frequency": 0, "break_off_duration": 0, "break_off_resources_number": 0, "Single_user_break_off_duration": 0.0, "label": 3}'
one_data_str

def predict_one(one_data_str):
  one_data_dict = json.loads(one_data_str)
  one_df = pd.DataFrame([one_data_dict])
  one_array = ct_load.transform(one_df)
  pred_num = xgb_load.predict(one_array)[0]
  pred_pro = max(xgb_load.predict_proba(one_array)[0])
  pred_name = label_name_list[pred_num]
  # 转为json字符串格式
  result_dict = {'pred_pro':str(pred_pro),'pred_num':str(pred_num),'pred_name':pred_name }
  result_json = json.dumps(result_dict)

  return result_json

demo = gr.Interface(fn=predict_one, 
             inputs="text",
             outputs="text",
             examples=[one_data_str,one_data_str ],
             )
             
# demo.launch(debug=True)
demo.launch()