mcp-plausible / app.py
azettl's picture
Update PLAUSIBLE_KEY env. name
e6fe444 verified
import gradio as gr
import requests
import json
import pandas as pd
from datetime import datetime, timedelta
import plotly.express as px
import plotly.graph_objects as go
from typing import Dict, List, Any, Optional
import os
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Configuration
PLAUSIBLE_URL = os.getenv("PLAUSIBLE_URL", "https://plausible.io/api/v2/query")
PLAUSIBLE_KEY = os.getenv("PLAUSIBLE_KEY")
class PlausibleAPI:
def __init__(self, api_key: str):
self.api_key = api_key
self.headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
def query(self, payload: Dict[str, Any]) -> Dict[str, Any]:
"""Make a query to the Plausible API"""
if not self.api_key:
return {"error": "PLAUSIBLE_KEY environment variable is not set"}
try:
response = requests.post(PLAUSIBLE_URL, headers=self.headers, json=payload)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
return {"error": f"API request failed: {str(e)}"}
except json.JSONDecodeError as e:
return {"error": f"Failed to parse JSON response: {str(e)}"}
# Initialize API client
api_client = PlausibleAPI(PLAUSIBLE_KEY)
def basic_stats_query(site_id: str, date_range: str, metrics: List[str]) -> tuple:
"""Get basic site statistics"""
if not site_id:
return "Please enter a site ID", None, None
payload = {
"site_id": site_id,
"metrics": metrics,
"date_range": date_range
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None, None
# Format results
if result.get("results"):
metrics_data = result["results"][0]["metrics"]
stats_dict = dict(zip(metrics, metrics_data))
# Create a simple bar chart
fig = px.bar(
x=list(stats_dict.keys()),
y=list(stats_dict.values()),
title=f"Stats for {site_id} ({date_range})"
)
fig.update_layout(xaxis_title="Metrics", yaxis_title="Values")
return json.dumps(result, indent=2), stats_dict, fig
return json.dumps(result, indent=2), None, None
def timeseries_query(site_id: str, date_range: str, metrics: List[str], time_dimension: str) -> tuple:
"""Get timeseries data"""
if not site_id:
return "Please enter a site ID", None
payload = {
"site_id": site_id,
"metrics": metrics,
"date_range": date_range,
"dimensions": [time_dimension]
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None
# Create timeseries chart
if result.get("results"):
df_data = []
for row in result["results"]:
row_dict = {"time": row["dimensions"][0]}
for i, metric in enumerate(metrics):
row_dict[metric] = row["metrics"][i]
df_data.append(row_dict)
df = pd.DataFrame(df_data)
df['time'] = pd.to_datetime(df['time'])
fig = go.Figure()
for metric in metrics:
fig.add_trace(go.Scatter(
x=df['time'],
y=df[metric],
mode='lines+markers',
name=metric
))
fig.update_layout(
title=f"Timeseries for {site_id}",
xaxis_title="Time",
yaxis_title="Values"
)
return json.dumps(result, indent=2), fig
return json.dumps(result, indent=2), None
def geographic_analysis(site_id: str, date_range: str, metrics: List[str]) -> tuple:
"""Analyze traffic by country and city"""
if not site_id:
return "Please enter a site ID", None, None
payload = {
"site_id": site_id,
"metrics": metrics,
"date_range": date_range,
"dimensions": ["visit:country_name", "visit:city_name"],
"filters": [["is_not", "visit:country_name", [""]]],
"order_by": [[metrics[0], "desc"]]
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None, None
# Create geographic visualization
if result.get("results"):
df_data = []
for row in result["results"]:
row_dict = {
"country": row["dimensions"][0],
"city": row["dimensions"][1]
}
for i, metric in enumerate(metrics):
row_dict[metric] = row["metrics"][i]
df_data.append(row_dict)
df = pd.DataFrame(df_data)
# Create a bar chart of top countries
country_stats = df.groupby('country')[metrics[0]].sum().sort_values(ascending=False).head(10)
fig = px.bar(
x=country_stats.index,
y=country_stats.values,
title=f"Top Countries by {metrics[0]} for {site_id}",
labels={'x': 'Country', 'y': metrics[0]}
)
fig.update_xaxes(tickangle=45)
return json.dumps(result, indent=2), fig, df.head(20).to_dict('records')
return json.dumps(result, indent=2), None, None
def utm_analysis(site_id: str, date_range: str) -> tuple:
"""Analyze UTM parameters"""
if not site_id:
return "Please enter a site ID", None, None
payload = {
"site_id": site_id,
"metrics": ["visitors", "events", "pageviews"],
"date_range": date_range,
"dimensions": ["visit:utm_medium", "visit:utm_source"],
"filters": [["is_not", "visit:utm_medium", [""]]]
}
result = api_client.query(payload)
if "error" in result:
return result["error"], None, None
if result.get("results"):
df_data = []
for row in result["results"]:
df_data.append({
"utm_medium": row["dimensions"][0] or "Direct",
"utm_source": row["dimensions"][1] or "Direct",
"visitors": row["metrics"][0],
"events": row["metrics"][1],
"pageviews": row["metrics"][2]
})
df = pd.DataFrame(df_data)
# Create sunburst chart
fig = px.sunburst(
df,
path=['utm_medium', 'utm_source'],
values='visitors',
title=f"UTM Analysis for {site_id}"
)
return json.dumps(result, indent=2), fig, df.to_dict('records')
return json.dumps(result, indent=2), None, None
def custom_query(site_id: str, query_json: str) -> str:
"""Execute a custom JSON query"""
if not site_id:
return "Please enter a site ID"
try:
payload = json.loads(query_json)
payload["site_id"] = site_id # Override site_id
result = api_client.query(payload)
return json.dumps(result, indent=2)
except json.JSONDecodeError as e:
return f"Invalid JSON: {str(e)}"
except Exception as e:
return f"Error: {str(e)}"
# Gradio Interface
with gr.Blocks(title="Plausible Analytics Dashboard", theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ“Š Plausible Analytics Dashboard")
gr.Markdown("MCP Server to analyze your website statistics using the Plausible Stats API.\n\nSo far this app is 100% vibe coded with the help of Claude Sonnet 4.\n\nTry it out with the site id 'azettl.net' or 'fridgeleftoversai.com'.")
with gr.Tab("Basic Stats"):
gr.Markdown("### Get basic website statistics")
with gr.Row():
site_input = gr.Textbox(
label="Site ID",
placeholder="example.com",
info="Your domain as added to Plausible"
)
date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month", "6mo", "12mo", "year", "all"],
value="7d",
label="Date Range"
)
metrics_input = gr.CheckboxGroup(
choices=["visitors", "visits", "pageviews", "views_per_visit", "bounce_rate", "visit_duration", "events"],
value=["visitors", "pageviews", "bounce_rate"],
label="Metrics to Analyze"
)
basic_btn = gr.Button("Get Basic Stats", variant="primary")
with gr.Row():
basic_json = gr.Code(label="API Response", language="json")
basic_stats = gr.JSON(label="Stats Summary")
basic_chart = gr.Plot(label="Statistics Chart")
basic_btn.click(
basic_stats_query,
inputs=[site_input, date_range, metrics_input],
outputs=[basic_json, basic_stats, basic_chart]
)
with gr.Tab("Timeseries"):
gr.Markdown("### View trends over time")
with gr.Row():
ts_site = gr.Textbox(label="Site ID", placeholder="example.com")
ts_date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month"],
value="7d",
label="Date Range"
)
with gr.Row():
ts_metrics = gr.CheckboxGroup(
choices=["visitors", "visits", "pageviews", "events"],
value=["visitors", "pageviews"],
label="Metrics"
)
ts_time_dim = gr.Dropdown(
choices=["time:hour", "time:day", "time:week", "time:month"],
value="time:day",
label="Time Dimension"
)
ts_btn = gr.Button("Generate Timeseries", variant="primary")
with gr.Row():
ts_json = gr.Code(label="API Response", language="json")
ts_chart = gr.Plot(label="Timeseries Chart")
ts_btn.click(
timeseries_query,
inputs=[ts_site, ts_date_range, ts_metrics, ts_time_dim],
outputs=[ts_json, ts_chart]
)
with gr.Tab("Geographic Analysis"):
gr.Markdown("### Analyze traffic by location")
with gr.Row():
geo_site = gr.Textbox(label="Site ID", placeholder="example.com")
geo_date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month"],
value="7d",
label="Date Range"
)
geo_metrics = gr.CheckboxGroup(
choices=["visitors", "visits", "pageviews", "bounce_rate"],
value=["visitors", "pageviews"],
label="Metrics"
)
geo_btn = gr.Button("Analyze Geography", variant="primary")
with gr.Row():
geo_json = gr.Code(label="API Response", language="json")
geo_chart = gr.Plot(label="Geographic Chart")
geo_table = gr.DataFrame(label="Top Locations")
geo_btn.click(
geographic_analysis,
inputs=[geo_site, geo_date_range, geo_metrics],
outputs=[geo_json, geo_chart, geo_table]
)
with gr.Tab("UTM Analysis"):
gr.Markdown("### Analyze marketing campaigns and traffic sources")
with gr.Row():
utm_site = gr.Textbox(label="Site ID", placeholder="example.com")
utm_date_range = gr.Dropdown(
choices=["day", "7d", "28d", "30d", "month"],
value="7d",
label="Date Range"
)
utm_btn = gr.Button("Analyze UTM Parameters", variant="primary")
with gr.Row():
utm_json = gr.Code(label="API Response", language="json")
utm_chart = gr.Plot(label="UTM Sunburst Chart")
utm_table = gr.DataFrame(label="UTM Data")
utm_btn.click(
utm_analysis,
inputs=[utm_site, utm_date_range],
outputs=[utm_json, utm_chart, utm_table]
)
with gr.Tab("Custom Query"):
gr.Markdown("### Execute custom JSON queries")
gr.Markdown("Use this tab to run advanced queries with custom filters and dimensions.")
custom_site = gr.Textbox(label="Site ID", placeholder="example.com")
custom_query_input = gr.Code(
label="JSON Query",
language="json",
value="""{
"metrics": ["visitors", "pageviews"],
"date_range": "7d",
"dimensions": ["visit:source"],
"order_by": [["visitors", "desc"]],
"pagination": {"limit": 10}
}""",
lines=15
)
custom_btn = gr.Button("Execute Query", variant="primary")
custom_result = gr.Code(label="Query Result", language="json", lines=20)
custom_btn.click(
custom_query,
inputs=[custom_site, custom_query_input],
outputs=[custom_result]
)
with gr.Tab("Setup & Documentation"):
gr.Markdown("""
## πŸ”§ Setup Instructions
### For Personal Use (Recommended)
This MCP server is designed for **personal use only**. Each user should run their own instance.
**Setup Steps:**
1. **Get your Plausible API key:**
- Log into your Plausible account
- Go to Account Settings β†’ API Keys
- Create a new key, select "Stats API" as type
2. **Set environment variable:**
```bash
# Windows
set PLAUSIBLE_KEY=your-key-here
# Mac/Linux
export PLAUSIBLE_KEY=your-key-here
# Or create .env file:
echo "PLAUSIBLE_KEY=your-key-here" > .env
```
2. **Install dependencies:**
```bash
pip install -r requirements.txt
```
3. **Run the server:**
```bash
python app.py
```
4. **Add to Claude Desktop config:**
```json
{
"mcpServers": {
"plausible": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"]
}
}
}
```
### ⚠️ Security Notice
- **DO NOT** share your API key with others
- **DO NOT** run this as a public server with your API key (Like I do here to show you how it works πŸ™ˆ)
- Each user should run their own instance with their own API key
---
## πŸ“– API Reference
**Available Metrics:**
- `visitors`: Unique visitors
- `visits`: Number of sessions
- `pageviews`: Total page views
- `views_per_visit`: Average pages per session
- `bounce_rate`: Bounce rate percentage
- `visit_duration`: Average visit duration
- `events`: Total events
**Date Ranges:**
- `day`: Current day
- `7d`: Last 7 days
- `28d`: Last 28 days
- `30d`: Last 30 days
- `month`: Current month
- `6mo`: Last 6 months
- `12mo`: Last 12 months
- `year`: Current year
- `all`: All time
**Common Dimensions:**
- `visit:country_name`: Country
- `visit:source`: Traffic source
- `visit:device`: Device type
- `visit:browser`: Browser
- `event:page`: Page path
- `time:day`: Daily grouping
- `time:hour`: Hourly grouping
**Example Filters:**
```json
[["is", "visit:country_name", ["United States", "Canada"]]]
[["contains", "event:page", ["/blog"]]]
[["is_not", "visit:device", ["Mobile"]]]
```
""")
# Launch configuration
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=False,
mcp_server=True
)