Spaces:
Running
Running
import gradio as gr | |
import requests | |
import json | |
import pandas as pd | |
from datetime import datetime, timedelta | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from typing import Dict, List, Any, Optional | |
import os | |
from dotenv import load_dotenv | |
# Load environment variables from .env file | |
load_dotenv() | |
# Configuration | |
PLAUSIBLE_URL = os.getenv("PLAUSIBLE_URL", "https://plausible.io/api/v2/query") | |
PLAUSIBLE_KEY = os.getenv("PLAUSIBLE_KEY") | |
class PlausibleAPI: | |
def __init__(self, api_key: str): | |
self.api_key = api_key | |
self.headers = { | |
'Authorization': f'Bearer {api_key}', | |
'Content-Type': 'application/json' | |
} | |
def query(self, payload: Dict[str, Any]) -> Dict[str, Any]: | |
"""Make a query to the Plausible API""" | |
if not self.api_key: | |
return {"error": "PLAUSIBLE_KEY environment variable is not set"} | |
try: | |
response = requests.post(PLAUSIBLE_URL, headers=self.headers, json=payload) | |
response.raise_for_status() | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
return {"error": f"API request failed: {str(e)}"} | |
except json.JSONDecodeError as e: | |
return {"error": f"Failed to parse JSON response: {str(e)}"} | |
# Initialize API client | |
api_client = PlausibleAPI(PLAUSIBLE_KEY) | |
def basic_stats_query(site_id: str, date_range: str, metrics: List[str]) -> tuple: | |
"""Get basic site statistics""" | |
if not site_id: | |
return "Please enter a site ID", None, None | |
payload = { | |
"site_id": site_id, | |
"metrics": metrics, | |
"date_range": date_range | |
} | |
result = api_client.query(payload) | |
if "error" in result: | |
return result["error"], None, None | |
# Format results | |
if result.get("results"): | |
metrics_data = result["results"][0]["metrics"] | |
stats_dict = dict(zip(metrics, metrics_data)) | |
# Create a simple bar chart | |
fig = px.bar( | |
x=list(stats_dict.keys()), | |
y=list(stats_dict.values()), | |
title=f"Stats for {site_id} ({date_range})" | |
) | |
fig.update_layout(xaxis_title="Metrics", yaxis_title="Values") | |
return json.dumps(result, indent=2), stats_dict, fig | |
return json.dumps(result, indent=2), None, None | |
def timeseries_query(site_id: str, date_range: str, metrics: List[str], time_dimension: str) -> tuple: | |
"""Get timeseries data""" | |
if not site_id: | |
return "Please enter a site ID", None | |
payload = { | |
"site_id": site_id, | |
"metrics": metrics, | |
"date_range": date_range, | |
"dimensions": [time_dimension] | |
} | |
result = api_client.query(payload) | |
if "error" in result: | |
return result["error"], None | |
# Create timeseries chart | |
if result.get("results"): | |
df_data = [] | |
for row in result["results"]: | |
row_dict = {"time": row["dimensions"][0]} | |
for i, metric in enumerate(metrics): | |
row_dict[metric] = row["metrics"][i] | |
df_data.append(row_dict) | |
df = pd.DataFrame(df_data) | |
df['time'] = pd.to_datetime(df['time']) | |
fig = go.Figure() | |
for metric in metrics: | |
fig.add_trace(go.Scatter( | |
x=df['time'], | |
y=df[metric], | |
mode='lines+markers', | |
name=metric | |
)) | |
fig.update_layout( | |
title=f"Timeseries for {site_id}", | |
xaxis_title="Time", | |
yaxis_title="Values" | |
) | |
return json.dumps(result, indent=2), fig | |
return json.dumps(result, indent=2), None | |
def geographic_analysis(site_id: str, date_range: str, metrics: List[str]) -> tuple: | |
"""Analyze traffic by country and city""" | |
if not site_id: | |
return "Please enter a site ID", None, None | |
payload = { | |
"site_id": site_id, | |
"metrics": metrics, | |
"date_range": date_range, | |
"dimensions": ["visit:country_name", "visit:city_name"], | |
"filters": [["is_not", "visit:country_name", [""]]], | |
"order_by": [[metrics[0], "desc"]] | |
} | |
result = api_client.query(payload) | |
if "error" in result: | |
return result["error"], None, None | |
# Create geographic visualization | |
if result.get("results"): | |
df_data = [] | |
for row in result["results"]: | |
row_dict = { | |
"country": row["dimensions"][0], | |
"city": row["dimensions"][1] | |
} | |
for i, metric in enumerate(metrics): | |
row_dict[metric] = row["metrics"][i] | |
df_data.append(row_dict) | |
df = pd.DataFrame(df_data) | |
# Create a bar chart of top countries | |
country_stats = df.groupby('country')[metrics[0]].sum().sort_values(ascending=False).head(10) | |
fig = px.bar( | |
x=country_stats.index, | |
y=country_stats.values, | |
title=f"Top Countries by {metrics[0]} for {site_id}", | |
labels={'x': 'Country', 'y': metrics[0]} | |
) | |
fig.update_xaxes(tickangle=45) | |
return json.dumps(result, indent=2), fig, df.head(20).to_dict('records') | |
return json.dumps(result, indent=2), None, None | |
def utm_analysis(site_id: str, date_range: str) -> tuple: | |
"""Analyze UTM parameters""" | |
if not site_id: | |
return "Please enter a site ID", None, None | |
payload = { | |
"site_id": site_id, | |
"metrics": ["visitors", "events", "pageviews"], | |
"date_range": date_range, | |
"dimensions": ["visit:utm_medium", "visit:utm_source"], | |
"filters": [["is_not", "visit:utm_medium", [""]]] | |
} | |
result = api_client.query(payload) | |
if "error" in result: | |
return result["error"], None, None | |
if result.get("results"): | |
df_data = [] | |
for row in result["results"]: | |
df_data.append({ | |
"utm_medium": row["dimensions"][0] or "Direct", | |
"utm_source": row["dimensions"][1] or "Direct", | |
"visitors": row["metrics"][0], | |
"events": row["metrics"][1], | |
"pageviews": row["metrics"][2] | |
}) | |
df = pd.DataFrame(df_data) | |
# Create sunburst chart | |
fig = px.sunburst( | |
df, | |
path=['utm_medium', 'utm_source'], | |
values='visitors', | |
title=f"UTM Analysis for {site_id}" | |
) | |
return json.dumps(result, indent=2), fig, df.to_dict('records') | |
return json.dumps(result, indent=2), None, None | |
def custom_query(site_id: str, query_json: str) -> str: | |
"""Execute a custom JSON query""" | |
if not site_id: | |
return "Please enter a site ID" | |
try: | |
payload = json.loads(query_json) | |
payload["site_id"] = site_id # Override site_id | |
result = api_client.query(payload) | |
return json.dumps(result, indent=2) | |
except json.JSONDecodeError as e: | |
return f"Invalid JSON: {str(e)}" | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Gradio Interface | |
with gr.Blocks(title="Plausible Analytics Dashboard", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π Plausible Analytics Dashboard") | |
gr.Markdown("MCP Server to analyze your website statistics using the Plausible Stats API.\n\nSo far this app is 100% vibe coded with the help of Claude Sonnet 4.\n\nTry it out with the site id 'azettl.net' or 'fridgeleftoversai.com'.") | |
with gr.Tab("Basic Stats"): | |
gr.Markdown("### Get basic website statistics") | |
with gr.Row(): | |
site_input = gr.Textbox( | |
label="Site ID", | |
placeholder="example.com", | |
info="Your domain as added to Plausible" | |
) | |
date_range = gr.Dropdown( | |
choices=["day", "7d", "28d", "30d", "month", "6mo", "12mo", "year", "all"], | |
value="7d", | |
label="Date Range" | |
) | |
metrics_input = gr.CheckboxGroup( | |
choices=["visitors", "visits", "pageviews", "views_per_visit", "bounce_rate", "visit_duration", "events"], | |
value=["visitors", "pageviews", "bounce_rate"], | |
label="Metrics to Analyze" | |
) | |
basic_btn = gr.Button("Get Basic Stats", variant="primary") | |
with gr.Row(): | |
basic_json = gr.Code(label="API Response", language="json") | |
basic_stats = gr.JSON(label="Stats Summary") | |
basic_chart = gr.Plot(label="Statistics Chart") | |
basic_btn.click( | |
basic_stats_query, | |
inputs=[site_input, date_range, metrics_input], | |
outputs=[basic_json, basic_stats, basic_chart] | |
) | |
with gr.Tab("Timeseries"): | |
gr.Markdown("### View trends over time") | |
with gr.Row(): | |
ts_site = gr.Textbox(label="Site ID", placeholder="example.com") | |
ts_date_range = gr.Dropdown( | |
choices=["day", "7d", "28d", "30d", "month"], | |
value="7d", | |
label="Date Range" | |
) | |
with gr.Row(): | |
ts_metrics = gr.CheckboxGroup( | |
choices=["visitors", "visits", "pageviews", "events"], | |
value=["visitors", "pageviews"], | |
label="Metrics" | |
) | |
ts_time_dim = gr.Dropdown( | |
choices=["time:hour", "time:day", "time:week", "time:month"], | |
value="time:day", | |
label="Time Dimension" | |
) | |
ts_btn = gr.Button("Generate Timeseries", variant="primary") | |
with gr.Row(): | |
ts_json = gr.Code(label="API Response", language="json") | |
ts_chart = gr.Plot(label="Timeseries Chart") | |
ts_btn.click( | |
timeseries_query, | |
inputs=[ts_site, ts_date_range, ts_metrics, ts_time_dim], | |
outputs=[ts_json, ts_chart] | |
) | |
with gr.Tab("Geographic Analysis"): | |
gr.Markdown("### Analyze traffic by location") | |
with gr.Row(): | |
geo_site = gr.Textbox(label="Site ID", placeholder="example.com") | |
geo_date_range = gr.Dropdown( | |
choices=["day", "7d", "28d", "30d", "month"], | |
value="7d", | |
label="Date Range" | |
) | |
geo_metrics = gr.CheckboxGroup( | |
choices=["visitors", "visits", "pageviews", "bounce_rate"], | |
value=["visitors", "pageviews"], | |
label="Metrics" | |
) | |
geo_btn = gr.Button("Analyze Geography", variant="primary") | |
with gr.Row(): | |
geo_json = gr.Code(label="API Response", language="json") | |
geo_chart = gr.Plot(label="Geographic Chart") | |
geo_table = gr.DataFrame(label="Top Locations") | |
geo_btn.click( | |
geographic_analysis, | |
inputs=[geo_site, geo_date_range, geo_metrics], | |
outputs=[geo_json, geo_chart, geo_table] | |
) | |
with gr.Tab("UTM Analysis"): | |
gr.Markdown("### Analyze marketing campaigns and traffic sources") | |
with gr.Row(): | |
utm_site = gr.Textbox(label="Site ID", placeholder="example.com") | |
utm_date_range = gr.Dropdown( | |
choices=["day", "7d", "28d", "30d", "month"], | |
value="7d", | |
label="Date Range" | |
) | |
utm_btn = gr.Button("Analyze UTM Parameters", variant="primary") | |
with gr.Row(): | |
utm_json = gr.Code(label="API Response", language="json") | |
utm_chart = gr.Plot(label="UTM Sunburst Chart") | |
utm_table = gr.DataFrame(label="UTM Data") | |
utm_btn.click( | |
utm_analysis, | |
inputs=[utm_site, utm_date_range], | |
outputs=[utm_json, utm_chart, utm_table] | |
) | |
with gr.Tab("Custom Query"): | |
gr.Markdown("### Execute custom JSON queries") | |
gr.Markdown("Use this tab to run advanced queries with custom filters and dimensions.") | |
custom_site = gr.Textbox(label="Site ID", placeholder="example.com") | |
custom_query_input = gr.Code( | |
label="JSON Query", | |
language="json", | |
value="""{ | |
"metrics": ["visitors", "pageviews"], | |
"date_range": "7d", | |
"dimensions": ["visit:source"], | |
"order_by": [["visitors", "desc"]], | |
"pagination": {"limit": 10} | |
}""", | |
lines=15 | |
) | |
custom_btn = gr.Button("Execute Query", variant="primary") | |
custom_result = gr.Code(label="Query Result", language="json", lines=20) | |
custom_btn.click( | |
custom_query, | |
inputs=[custom_site, custom_query_input], | |
outputs=[custom_result] | |
) | |
with gr.Tab("Setup & Documentation"): | |
gr.Markdown(""" | |
## π§ Setup Instructions | |
### For Personal Use (Recommended) | |
This MCP server is designed for **personal use only**. Each user should run their own instance. | |
**Setup Steps:** | |
1. **Get your Plausible API key:** | |
- Log into your Plausible account | |
- Go to Account Settings β API Keys | |
- Create a new key, select "Stats API" as type | |
2. **Set environment variable:** | |
```bash | |
# Windows | |
set PLAUSIBLE_KEY=your-key-here | |
# Mac/Linux | |
export PLAUSIBLE_KEY=your-key-here | |
# Or create .env file: | |
echo "PLAUSIBLE_KEY=your-key-here" > .env | |
``` | |
2. **Install dependencies:** | |
```bash | |
pip install -r requirements.txt | |
``` | |
3. **Run the server:** | |
```bash | |
python app.py | |
``` | |
4. **Add to Claude Desktop config:** | |
```json | |
{ | |
"mcpServers": { | |
"plausible": { | |
"command": "npx", | |
"args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"] | |
} | |
} | |
} | |
``` | |
### β οΈ Security Notice | |
- **DO NOT** share your API key with others | |
- **DO NOT** run this as a public server with your API key (Like I do here to show you how it works π) | |
- Each user should run their own instance with their own API key | |
--- | |
## π API Reference | |
**Available Metrics:** | |
- `visitors`: Unique visitors | |
- `visits`: Number of sessions | |
- `pageviews`: Total page views | |
- `views_per_visit`: Average pages per session | |
- `bounce_rate`: Bounce rate percentage | |
- `visit_duration`: Average visit duration | |
- `events`: Total events | |
**Date Ranges:** | |
- `day`: Current day | |
- `7d`: Last 7 days | |
- `28d`: Last 28 days | |
- `30d`: Last 30 days | |
- `month`: Current month | |
- `6mo`: Last 6 months | |
- `12mo`: Last 12 months | |
- `year`: Current year | |
- `all`: All time | |
**Common Dimensions:** | |
- `visit:country_name`: Country | |
- `visit:source`: Traffic source | |
- `visit:device`: Device type | |
- `visit:browser`: Browser | |
- `event:page`: Page path | |
- `time:day`: Daily grouping | |
- `time:hour`: Hourly grouping | |
**Example Filters:** | |
```json | |
[["is", "visit:country_name", ["United States", "Canada"]]] | |
[["contains", "event:page", ["/blog"]]] | |
[["is_not", "visit:device", ["Mobile"]]] | |
``` | |
""") | |
# Launch configuration | |
if __name__ == "__main__": | |
demo.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
debug=False, | |
mcp_server=True | |
) |