ayberkuckun commited on
Commit
7d0d8db
·
1 Parent(s): 7992d05
.gitignore CHANGED
@@ -1,2 +1 @@
1
  .idea/
2
- iris_model/
 
1
  .idea/
 
app.py CHANGED
@@ -12,7 +12,7 @@ project = hopsworks.login()
12
  fs = project.get_feature_store()
13
 
14
 
15
- mr = project.get_model_registry(api_key_value=os.environ["HOPSWORKS_API_KEY"])
16
  model = mr.get_model("iris_modal", version=1)
17
  model_dir = model.download()
18
  model = joblib.load(model_dir + "/iris_model.pkl")
 
12
  fs = project.get_feature_store()
13
 
14
 
15
+ mr = project.get_model_registry()
16
  model = mr.get_model("iris_modal", version=1)
17
  model_dir = model.download()
18
  model = joblib.load(model_dir + "/iris_model.pkl")
huggingface-spaces-iris-monitor/.hw_api_key DELETED
@@ -1 +0,0 @@
1
- UVRgRNenmo1JCsAe.u88x5fukWdRABp8x0qoIynyvacFzoggWCv8sXp5L9waMpsmVpEtOGgD5J8Ds3NM5
 
 
huggingface-spaces-iris-monitor/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Iris Monitoring
3
- emoji: 💻
4
- colorFrom: blue
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 3.8.2
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
huggingface-spaces-iris-monitor/app.py DELETED
@@ -1,31 +0,0 @@
1
- import gradio as gr
2
- from PIL import Image
3
- import hopsworks
4
-
5
- project = hopsworks.login()
6
- fs = project.get_feature_store()
7
-
8
- dataset_api = project.get_dataset_api()
9
-
10
- dataset_api.download("Resources/images/latest_iris.png")
11
- dataset_api.download("Resources/images/actual_iris.png")
12
- dataset_api.download("Resources/images/df_recent.png")
13
- dataset_api.download("Resources/images/confusion_matrix.png")
14
-
15
- with gr.Blocks() as demo:
16
- with gr.Row():
17
- with gr.Column():
18
- gr.Label("Today's Predicted Image")
19
- input_img = gr.Image("latest_iris.png", elem_id="predicted-img")
20
- with gr.Column():
21
- gr.Label("Today's Actual Image")
22
- input_img = gr.Image("actual_iris.png", elem_id="actual-img")
23
- with gr.Row():
24
- with gr.Column():
25
- gr.Label("Recent Prediction History")
26
- input_img = gr.Image("df_recent.png", elem_id="recent-predictions")
27
- with gr.Column():
28
- gr.Label("Confusion Maxtrix with Historical Prediction Performance")
29
- input_img = gr.Image("confusion_matrix.png", elem_id="confusion-matrix")
30
-
31
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
huggingface-spaces-iris-monitor/requirements.txt DELETED
@@ -1 +0,0 @@
1
- hopsworks
 
 
huggingface-spaces-iris/.hw_api_key DELETED
@@ -1 +0,0 @@
1
- UVRgRNenmo1JCsAe.u88x5fukWdRABp8x0qoIynyvacFzoggWCv8sXp5L9waMpsmVpEtOGgD5J8Ds3NM5
 
 
huggingface-spaces-iris/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- title: Iris
3
- emoji: 🐢
4
- colorFrom: purple
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 3.5
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
huggingface-spaces-iris/app.py DELETED
@@ -1,47 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- from PIL import Image
4
- import requests
5
-
6
- import hopsworks
7
- import joblib
8
-
9
- project = hopsworks.login()
10
- fs = project.get_feature_store()
11
-
12
-
13
- mr = project.get_model_registry()
14
- model = mr.get_model("iris_modal", version=1)
15
- model_dir = model.download()
16
- model = joblib.load(model_dir + "/iris_model.pkl")
17
-
18
-
19
- def iris(sepal_length, sepal_width, petal_length, petal_width):
20
- input_list = []
21
- input_list.append(sepal_length)
22
- input_list.append(sepal_width)
23
- input_list.append(petal_length)
24
- input_list.append(petal_width)
25
- # 'res' is a list of predictions returned as the label.
26
- res = model.predict(np.asarray(input_list).reshape(1, -1))
27
- # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
28
- # the first element.
29
- flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
30
- img = Image.open(requests.get(flower_url, stream=True).raw)
31
- return img
32
-
33
- demo = gr.Interface(
34
- fn=iris,
35
- title="Iris Flower Predictive Analytics",
36
- description="Experiment with sepal/petal lengths/widths to predict which flower it is.",
37
- allow_flagging="never",
38
- inputs=[
39
- gr.inputs.Number(default=1.0, label="sepal length (cm)"),
40
- gr.inputs.Number(default=1.0, label="sepal width (cm)"),
41
- gr.inputs.Number(default=1.0, label="petal length (cm)"),
42
- gr.inputs.Number(default=1.0, label="petal width (cm)"),
43
- ],
44
- outputs=gr.Image(type="pil"))
45
-
46
- demo.launch()
47
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
huggingface-spaces-iris/requirements.txt DELETED
@@ -1,3 +0,0 @@
1
- hopsworks
2
- joblib
3
- scikit-learn