example added + colors
Browse files- .gitattributes +1 -0
- app.py +202 -48
- example/fake_song.mp3 +3 -0
- example/real_song.mp3 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.mp3 filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -18,6 +18,7 @@ MODEL_IDS = {
|
|
| 18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
model_cache = {}
|
| 20 |
|
|
|
|
| 21 |
def load_model(model_name):
|
| 22 |
"""Load model if not already cached"""
|
| 23 |
if model_name not in model_cache:
|
|
@@ -28,109 +29,262 @@ def load_model(model_name):
|
|
| 28 |
model_cache[model_name] = model
|
| 29 |
return model_cache[model_name]
|
| 30 |
|
|
|
|
| 31 |
def process_audio(audio_path, model_name):
|
| 32 |
"""Process audio file and return prediction"""
|
| 33 |
try:
|
| 34 |
model = load_model(model_name)
|
| 35 |
max_time = model.config.audio.max_time
|
| 36 |
-
|
| 37 |
# Load and process audio
|
| 38 |
audio, sr = librosa.load(audio_path, sr=16000)
|
| 39 |
chunk_samples = int(max_time * sr)
|
| 40 |
total_chunks = len(audio) // chunk_samples
|
| 41 |
middle_chunk_idx = total_chunks // 2
|
| 42 |
-
|
| 43 |
# Extract middle chunk
|
| 44 |
start = middle_chunk_idx * chunk_samples
|
| 45 |
end = start + chunk_samples
|
| 46 |
chunk = audio[start:end]
|
| 47 |
-
|
| 48 |
if len(chunk) < chunk_samples:
|
| 49 |
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
|
| 50 |
-
|
| 51 |
# Get prediction
|
| 52 |
with torch.no_grad():
|
| 53 |
chunk = torch.from_numpy(chunk).float().to(device)
|
| 54 |
pred = model(chunk.unsqueeze(0))
|
| 55 |
prob = torch.sigmoid(pred).cpu().numpy()[0]
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
except Exception as e:
|
| 60 |
-
return {"Error": str(e)}
|
|
|
|
| 61 |
|
| 62 |
def predict(audio_file, model_name):
|
| 63 |
"""Gradio interface function"""
|
| 64 |
if audio_file is None:
|
| 65 |
-
return {"Message": "Please upload an audio file"}
|
| 66 |
return process_audio(audio_file, model_name)
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
# Create Gradio interface
|
| 69 |
-
with gr.Blocks() as demo:
|
| 70 |
# Title, Subtitle, and Logo
|
| 71 |
gr.HTML(
|
| 72 |
"""
|
| 73 |
-
<div
|
| 74 |
-
<
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
<h3>ICLR 2025 [Poster]</h3>
|
| 78 |
-
<p style="font-size: 1.1em; color: #
|
| 79 |
-
Detect if a song is real or AI-generated
|
| 80 |
-
|
| 81 |
</p>
|
| 82 |
</div>
|
| 83 |
"""
|
| 84 |
)
|
| 85 |
-
|
| 86 |
-
#
|
| 87 |
-
# with gr.Row():
|
| 88 |
-
# paper_radio = gr.Radio(
|
| 89 |
-
# choices=["Paper", "Dataset", "ArXiv", "GitHub"],
|
| 90 |
-
# label="Resources",
|
| 91 |
-
# info="Click to visit respective links"
|
| 92 |
-
# )
|
| 93 |
-
|
| 94 |
gr.HTML(
|
| 95 |
"""
|
| 96 |
-
<div
|
| 97 |
-
<
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
</div>
|
| 105 |
"""
|
| 106 |
)
|
| 107 |
-
|
| 108 |
# Main Interface
|
| 109 |
-
with gr.Row():
|
| 110 |
with gr.Column():
|
| 111 |
audio_input = gr.Audio(
|
| 112 |
-
label="Upload Audio File",
|
| 113 |
-
type="filepath"
|
|
|
|
| 114 |
)
|
|
|
|
| 115 |
model_dropdown = gr.Dropdown(
|
| 116 |
choices=list(MODEL_IDS.keys()),
|
| 117 |
value="SpecTTTra-Ξ³ (5s)",
|
| 118 |
-
label="Select Model"
|
|
|
|
| 119 |
)
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
with gr.Column():
|
|
|
|
| 123 |
output = gr.Label(
|
| 124 |
-
label="Analysis Result",
|
| 125 |
-
num_top_classes=2
|
|
|
|
|
|
|
| 126 |
)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
)
|
| 134 |
|
|
|
|
|
|
|
|
|
|
| 135 |
if __name__ == "__main__":
|
| 136 |
demo.launch()
|
|
|
|
| 18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 19 |
model_cache = {}
|
| 20 |
|
| 21 |
+
|
| 22 |
def load_model(model_name):
|
| 23 |
"""Load model if not already cached"""
|
| 24 |
if model_name not in model_cache:
|
|
|
|
| 29 |
model_cache[model_name] = model
|
| 30 |
return model_cache[model_name]
|
| 31 |
|
| 32 |
+
|
| 33 |
def process_audio(audio_path, model_name):
|
| 34 |
"""Process audio file and return prediction"""
|
| 35 |
try:
|
| 36 |
model = load_model(model_name)
|
| 37 |
max_time = model.config.audio.max_time
|
| 38 |
+
|
| 39 |
# Load and process audio
|
| 40 |
audio, sr = librosa.load(audio_path, sr=16000)
|
| 41 |
chunk_samples = int(max_time * sr)
|
| 42 |
total_chunks = len(audio) // chunk_samples
|
| 43 |
middle_chunk_idx = total_chunks // 2
|
| 44 |
+
|
| 45 |
# Extract middle chunk
|
| 46 |
start = middle_chunk_idx * chunk_samples
|
| 47 |
end = start + chunk_samples
|
| 48 |
chunk = audio[start:end]
|
| 49 |
+
|
| 50 |
if len(chunk) < chunk_samples:
|
| 51 |
chunk = np.pad(chunk, (0, chunk_samples - len(chunk)))
|
| 52 |
+
|
| 53 |
# Get prediction
|
| 54 |
with torch.no_grad():
|
| 55 |
chunk = torch.from_numpy(chunk).float().to(device)
|
| 56 |
pred = model(chunk.unsqueeze(0))
|
| 57 |
prob = torch.sigmoid(pred).cpu().numpy()[0]
|
| 58 |
+
|
| 59 |
+
real_prob = 1 - prob
|
| 60 |
+
fake_prob = prob
|
| 61 |
+
|
| 62 |
+
# Return formatted results with emojis
|
| 63 |
+
return {
|
| 64 |
+
"π΅ Real": float(real_prob),
|
| 65 |
+
"π€ Fake": float(fake_prob)
|
| 66 |
+
}
|
| 67 |
|
| 68 |
except Exception as e:
|
| 69 |
+
return {"β Error": str(e)}
|
| 70 |
+
|
| 71 |
|
| 72 |
def predict(audio_file, model_name):
|
| 73 |
"""Gradio interface function"""
|
| 74 |
if audio_file is None:
|
| 75 |
+
return {"β οΈ Message": "Please upload an audio file"}
|
| 76 |
return process_audio(audio_file, model_name)
|
| 77 |
|
| 78 |
+
|
| 79 |
+
# Custom CSS for styling
|
| 80 |
+
css = """
|
| 81 |
+
:root {
|
| 82 |
+
--primary-color: #6366f1;
|
| 83 |
+
--secondary-color: #8b5cf6;
|
| 84 |
+
--accent-color: #ec4899;
|
| 85 |
+
--background-color: #f8fafc;
|
| 86 |
+
--text-color: #1e293b;
|
| 87 |
+
--border-radius: 10px;
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
.gradio-container {
|
| 91 |
+
background-color: var(--background-color);
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
.gr-button {
|
| 95 |
+
background: linear-gradient(90deg, var(--primary-color), var(--secondary-color));
|
| 96 |
+
border: none !important;
|
| 97 |
+
color: white !important;
|
| 98 |
+
border-radius: var(--border-radius) !important;
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
.gr-button:hover {
|
| 102 |
+
background: linear-gradient(90deg, var(--secondary-color), var(--accent-color));
|
| 103 |
+
transform: translateY(-2px);
|
| 104 |
+
box-shadow: 0 10px 20px rgba(0,0,0,0.1);
|
| 105 |
+
transition: all 0.3s ease;
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
.gr-form {
|
| 109 |
+
border-radius: var(--border-radius) !important;
|
| 110 |
+
border: 1px solid #e2e8f0 !important;
|
| 111 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.05) !important;
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
.footer {
|
| 115 |
+
margin-top: 20px;
|
| 116 |
+
text-align: center;
|
| 117 |
+
font-size: 0.9em;
|
| 118 |
+
color: #64748b;
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
.gradient-text {
|
| 122 |
+
background: linear-gradient(90deg, var(--primary-color), var(--accent-color));
|
| 123 |
+
-webkit-background-clip: text;
|
| 124 |
+
-webkit-text-fill-color: transparent;
|
| 125 |
+
background-clip: text;
|
| 126 |
+
text-fill-color: transparent;
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
.logo-container {
|
| 130 |
+
display: flex;
|
| 131 |
+
justify-content: center;
|
| 132 |
+
margin-bottom: 1rem;
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
.header-container {
|
| 136 |
+
text-align: center;
|
| 137 |
+
margin-bottom: 2rem;
|
| 138 |
+
padding: 1.5rem;
|
| 139 |
+
background: rgba(255, 255, 255, 0.8);
|
| 140 |
+
border-radius: var(--border-radius);
|
| 141 |
+
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.05);
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
.resource-links {
|
| 145 |
+
display: flex;
|
| 146 |
+
justify-content: center;
|
| 147 |
+
gap: 1rem;
|
| 148 |
+
flex-wrap: wrap;
|
| 149 |
+
margin-bottom: 1.5rem;
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
.resource-link {
|
| 153 |
+
display: inline-block;
|
| 154 |
+
padding: 0.5rem 1rem;
|
| 155 |
+
background: white;
|
| 156 |
+
border-radius: var(--border-radius);
|
| 157 |
+
color: var(--primary-color);
|
| 158 |
+
text-decoration: none;
|
| 159 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
|
| 160 |
+
transition: all 0.2s ease;
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
.resource-link:hover {
|
| 164 |
+
transform: translateY(-2px);
|
| 165 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
.label-container {
|
| 169 |
+
border-radius: var(--border-radius);
|
| 170 |
+
overflow: hidden;
|
| 171 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.05);
|
| 172 |
+
}
|
| 173 |
+
"""
|
| 174 |
+
|
| 175 |
# Create Gradio interface
|
| 176 |
+
with gr.Blocks(css=css) as demo:
|
| 177 |
# Title, Subtitle, and Logo
|
| 178 |
gr.HTML(
|
| 179 |
"""
|
| 180 |
+
<div class="header-container">
|
| 181 |
+
<div class="logo-container">
|
| 182 |
+
<img src="https://i.postimg.cc/3Jx3yZ5b/real-vs-fake-sonics-w-logo.jpg"
|
| 183 |
+
style="max-width: 180px; border-radius: 15px; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
|
| 184 |
+
</div>
|
| 185 |
+
<h1 class="gradient-text">π΅ SONICS: Synthetic Or Not - Identifying Counterfeit Songs π€</h1>
|
| 186 |
<h3>ICLR 2025 [Poster]</h3>
|
| 187 |
+
<p style="font-size: 1.1em; color: #64748b; margin: 15px 0;">
|
| 188 |
+
Detect if a song is real or AI-generated with our state-of-the-art models.
|
| 189 |
+
Simply upload an audio file to verify its authenticity!
|
| 190 |
</p>
|
| 191 |
</div>
|
| 192 |
"""
|
| 193 |
)
|
| 194 |
+
|
| 195 |
+
# Resource Links
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
gr.HTML(
|
| 197 |
"""
|
| 198 |
+
<div class="resource-links">
|
| 199 |
+
<a href="https://openreview.net/forum?id=PY7KSh29Z8" target="_blank" class="resource-link">
|
| 200 |
+
π Paper
|
| 201 |
+
</a>
|
| 202 |
+
<a href="https://huggingface.co/datasets/awsaf49/sonics" target="_blank" class="resource-link">
|
| 203 |
+
π΅ Dataset
|
| 204 |
+
</a>
|
| 205 |
+
<a href="https://huggingface.co/collections/awsaf49/sonics-spectttra-67bb6517b3920fd18e409013" target="_blank" class="resource-link">
|
| 206 |
+
π€ Models
|
| 207 |
+
</a>
|
| 208 |
+
<a href="https://arxiv.org/abs/2408.14080" target="_blank" class="resource-link">
|
| 209 |
+
π¬ ArXiv
|
| 210 |
+
</a>
|
| 211 |
+
<a href="https://github.com/awsaf49/sonics" target="_blank" class="resource-link">
|
| 212 |
+
π» GitHub
|
| 213 |
+
</a>
|
| 214 |
</div>
|
| 215 |
"""
|
| 216 |
)
|
| 217 |
+
|
| 218 |
# Main Interface
|
| 219 |
+
with gr.Row(equal_height=True):
|
| 220 |
with gr.Column():
|
| 221 |
audio_input = gr.Audio(
|
| 222 |
+
label="π§ Upload Audio File",
|
| 223 |
+
type="filepath",
|
| 224 |
+
elem_id="audio_input"
|
| 225 |
)
|
| 226 |
+
|
| 227 |
model_dropdown = gr.Dropdown(
|
| 228 |
choices=list(MODEL_IDS.keys()),
|
| 229 |
value="SpecTTTra-Ξ³ (5s)",
|
| 230 |
+
label="π Select Model",
|
| 231 |
+
elem_id="model_dropdown"
|
| 232 |
)
|
| 233 |
+
|
| 234 |
+
submit_btn = gr.Button(
|
| 235 |
+
"β¨ Analyze Audio",
|
| 236 |
+
elem_id="submit_btn"
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
with gr.Column():
|
| 240 |
+
# Define output before using it in Examples
|
| 241 |
output = gr.Label(
|
| 242 |
+
label="π Analysis Result",
|
| 243 |
+
num_top_classes=2,
|
| 244 |
+
elem_id="output",
|
| 245 |
+
elem_classes="label-container"
|
| 246 |
)
|
| 247 |
+
|
| 248 |
+
with gr.Accordion("βΉοΈ How It Works", open=False):
|
| 249 |
+
gr.Markdown("""
|
| 250 |
+
The SONICS classifier analyzes your audio to determine if it's an authentic song (Human created) or
|
| 251 |
+
generated by AI. Our models are trained on a diverse dataset of real and AI-generated songs from Suno and Udio.
|
| 252 |
+
|
| 253 |
+
**Models available:**
|
| 254 |
+
- **SpecTTTra-Ξ³**: Optimized for speed
|
| 255 |
+
- **SpecTTTra-Ξ²**: Balanced performance
|
| 256 |
+
- **SpecTTTra-Ξ±**: Highest accuracy
|
| 257 |
+
|
| 258 |
+
**Duration variants:**
|
| 259 |
+
- **5s**: Analyzes a 5-second clip (faster)
|
| 260 |
+
- **120s**: Analyzes up to 2 minutes (more accurate)
|
| 261 |
+
""")
|
| 262 |
+
|
| 263 |
+
# Add Examples section after output is defined
|
| 264 |
+
with gr.Accordion("π¬ Example Audio Files", open=True):
|
| 265 |
+
gr.Examples(
|
| 266 |
+
examples=[
|
| 267 |
+
["example/real_song.mp3", "SpecTTTra-Ξ³ (5s)"],
|
| 268 |
+
["example/fake_song.mp3", "SpecTTTra-Ξ³ (5s)"],
|
| 269 |
+
],
|
| 270 |
+
inputs=[audio_input, model_dropdown],
|
| 271 |
+
outputs=[output],
|
| 272 |
+
fn=predict,
|
| 273 |
+
cache_examples=True,
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
# Footer
|
| 277 |
+
gr.HTML(
|
| 278 |
+
"""
|
| 279 |
+
<div class="footer">
|
| 280 |
+
<p>SONICS: Synthetic Or Not - Identifying Counterfeit Songs | Created by SONICS Team</p>
|
| 281 |
+
<p>Β© 2025 - For research purposes only</p>
|
| 282 |
+
</div>
|
| 283 |
+
"""
|
| 284 |
)
|
| 285 |
|
| 286 |
+
# Prediction handling
|
| 287 |
+
submit_btn.click(fn=predict, inputs=[audio_input, model_dropdown], outputs=[output])
|
| 288 |
+
|
| 289 |
if __name__ == "__main__":
|
| 290 |
demo.launch()
|
example/fake_song.mp3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ba0ad7b7a7104a29ddf18c3ba3e04fb5045cdc1eb530f62fa611a08228eb30e
|
| 3 |
+
size 4410477
|
example/real_song.mp3
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c54d0a4d79601bdc739970ed8c22b6f5199527b79592146ebecf180e94f37529
|
| 3 |
+
size 1922782
|