awais0300 commited on
Commit
1ba3b61
Β·
verified Β·
1 Parent(s): 4cac70c

Create App.py

Browse files
Files changed (1) hide show
  1. App.py +41 -0
App.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from keras.models import load_model
3
+ from PIL import Image
4
+ import numpy as np
5
+ import cv2
6
+
7
+ # Load model once
8
+ @st.cache_resource
9
+ def load_expression_model():
10
+ return load_model("expression_model.h5")
11
+
12
+ model = load_expression_model()
13
+
14
+ # Define class labels (update based on your training)
15
+ class_names = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
16
+
17
+ # Resize and preprocess image
18
+ def preprocess_image(img):
19
+ img = img.convert('L') # convert to grayscale
20
+ img = img.resize((48, 48))
21
+ img_array = np.array(img)
22
+ img_array = img_array / 255.0 # normalize
23
+ img_array = np.expand_dims(img_array, axis=0)
24
+ img_array = np.expand_dims(img_array, axis=-1)
25
+ return img_array
26
+
27
+ # Streamlit UI
28
+ st.title("Facial Expression Classifier 😊😒😠")
29
+ st.write("Upload an image and the model will predict the facial expression.")
30
+
31
+ uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "png", "jpeg"])
32
+
33
+ if uploaded_file is not None:
34
+ img = Image.open(uploaded_file)
35
+ st.image(img, caption="Uploaded Image", use_column_width=True)
36
+
37
+ with st.spinner('Analyzing...'):
38
+ processed_img = preprocess_image(img)
39
+ prediction = model.predict(processed_img)
40
+ class_index = np.argmax(prediction)
41
+ st.success(f"Predicted Expression: **{class_names[class_index]}**")