Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import os | |
| import json | |
| from PIL import Image | |
| from urllib.parse import quote # Ensure this import is included | |
| # Set page configuration with a title and favicon | |
| st.set_page_config( | |
| page_title="🌌🚀 Mixable AI - Voice Search", | |
| page_icon="🌠", | |
| layout="wide", | |
| initial_sidebar_state="expanded", | |
| menu_items={ | |
| 'Get Help': 'https://huggingface.co/awacke1', | |
| 'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload", | |
| 'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558" | |
| } | |
| ) | |
| PromptPrefix = 'Create a markdown outline and table with appropriate emojis for word game rules which define the method steps of play for topic of ' | |
| # -----------------------------------------------------------------Art Card Sidebar: | |
| import base64 | |
| import requests | |
| def get_image_as_base64(url): | |
| response = requests.get(url) | |
| if response.status_code == 200: | |
| # Convert the image to base64 | |
| return base64.b64encode(response.content).decode("utf-8") | |
| else: | |
| return None | |
| def create_download_link(filename, base64_str): | |
| href = f'<a href="data:file/png;base64,{base64_str}" download="{filename}">Download Image</a>' | |
| return href | |
| # Get this from paste into markdown feature | |
| image_url = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/G_GkRD_IT3f14K7gWlbwi.png" | |
| image_url2 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/gikaT871Mm8k6wuv4pl_g.png" | |
| image_url3 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/gv1xmIiXh1NGTeeV-cYF2.png" | |
| image_url4 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/2YsnDyc_nDNW71PPKozdN.png" | |
| image_url5 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/eGii5DvGIuCtWCU08_i-D.png" | |
| image_url6 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/2-KfxcuXRcTFiHf4XlNsX.png" | |
| image_base64 = get_image_as_base64(image_url) | |
| image_base642 = get_image_as_base64(image_url2) | |
| image_base643 = get_image_as_base64(image_url3) | |
| image_base644 = get_image_as_base64(image_url4) | |
| image_base645 = get_image_as_base64(image_url5) | |
| image_base646 = get_image_as_base64(image_url6) | |
| if image_base64 is not None: | |
| with st.sidebar: | |
| st.markdown("""### Word Game AI""") | |
| st.markdown(f"") | |
| st.markdown(f"") | |
| st.markdown(f"") | |
| st.markdown(f"") | |
| st.markdown(f"") | |
| st.markdown(f"") | |
| #download_link = create_download_link("downloaded_image.png", image_base64) | |
| #st.markdown(download_link, unsafe_allow_html=True) | |
| else: | |
| st.sidebar.write("Failed to load the image.") | |
| # ------------------------------------------------------------- Art Card Sidebar | |
| # Ensure the directory for storing scores exists | |
| score_dir = "scores" | |
| os.makedirs(score_dir, exist_ok=True) | |
| # Function to generate a unique key for each button, including an emoji | |
| def generate_key(label, header, idx): | |
| return f"{header}_{label}_{idx}_key" | |
| # Function to increment and save score | |
| def update_score(key, increment=1): | |
| score_file = os.path.join(score_dir, f"{key}.json") | |
| if os.path.exists(score_file): | |
| with open(score_file, "r") as file: | |
| score_data = json.load(file) | |
| else: | |
| score_data = {"clicks": 0, "score": 0} | |
| score_data["clicks"] += 1 | |
| score_data["score"] += increment | |
| with open(score_file, "w") as file: | |
| json.dump(score_data, file) | |
| return score_data["score"] | |
| # Function to load score | |
| def load_score(key): | |
| score_file = os.path.join(score_dir, f"{key}.json") | |
| if os.path.exists(score_file): | |
| with open(score_file, "r") as file: | |
| score_data = json.load(file) | |
| return score_data["score"] | |
| return 0 | |
| roleplaying_glossary = { | |
| "👨👩👧👦 Top Family Games": { | |
| "Big Easy Busket": ["New Orleans culture", "Band formation", "Song performance", "Location strategy", "Diversity celebration", "3-day gameplay"], | |
| "Bonanza": [ | |
| "Bean planting and harvesting", | |
| "Bid and trade interaction", | |
| "Quirky card artwork", | |
| "Hand management", | |
| "Negotiation skills", | |
| "Set collecting", | |
| "Fun with large groups", | |
| "Laughter and enjoyment" | |
| ], | |
| "Love Letter": [ | |
| "Valentine's Day theme", | |
| "Simple gameplay mechanics", | |
| "Card effects and strategy", | |
| "Deduction to find love letter's sender", | |
| "Take that elements", | |
| "Fun for celebrating love", | |
| "Engagement and elimination", | |
| "Quick and engaging play" | |
| ], | |
| "Japan to Japan": [ | |
| "Global Tourism Resilience Day theme", | |
| "Travel and itinerary planning mechanics", | |
| "1 to 5 player game", | |
| "Game set in 2024 by AEG", | |
| "13 Rounds of strategic activity card placement", | |
| "Illustrations by Japan-based artists", | |
| "Efficiency in trip planning emphasized", | |
| "Resilience through thoughtful touring", | |
| "Inspired by real travel planning experiences" | |
| ], | |
| "Votes for Women": [ | |
| "World Social Justice Day theme", | |
| "Card-driven game exploring American women's suffrage movement", | |
| "1 to 4 player game", | |
| "Released in 2022 by Fort Circle Games", | |
| "Covers 1848 to 1920 suffrage movement", | |
| "Includes competitive, cooperative, and solitary play modes", | |
| "Engages players in the ratification or rejection of the 19th Amendment", | |
| "Educational content on women's rights history", | |
| "Mechanics include area majority, dice rolling, cooperative play, and campaign-driven gameplay" | |
| ], | |
| }, | |
| "📚 Traditional Word Games": { | |
| "Scrabble": ["Tile placement", "Word formation", "Point scoring"], | |
| "Boggle": ["Letter grid", "Timed word search", "Word length points"], | |
| "Crossword Puzzles": ["Clue solving", "Word filling", "Thematic puzzles"], | |
| "Banagrams": ["Tile shuffling", "Personal anagram puzzles", "Speed challenge"], | |
| "Hangman": ["Word guessing", "Letter guessing", "Limited attempts"], | |
| }, | |
| "💡 Digital Word Games": { | |
| "Words With Friends": ["Digital Scrabble-like", "Online multiplayer", "Social interaction"], | |
| "Wordle": ["Daily word guessing", "Limited tries", "Shareable results"], | |
| "Letterpress": ["Competitive word search", "Territory control", "Strategic letter usage"], | |
| "Alphabear": ["Word formation", "Cute characters", "Puzzle strategy"], | |
| }, | |
| "🎮 Game Design and Mechanics": { | |
| "Gameplay Dynamics": ["Word discovery", "Strategic placement", "Time pressure"], | |
| "Player Engagement": ["Daily challenges", "Leaderboards", "Community puzzles"], | |
| "Learning and Development": ["Vocabulary building", "Spelling practice", "Cognitive skills"], | |
| }, | |
| "🌐 Online Platforms & Tools": { | |
| "Multiplayer Platforms": ["Real-time competition", "Asynchronous play", "Global matchmaking"], | |
| "Educational Tools": ["Learning modes", "Progress tracking", "Skill levels"], | |
| "Community Features": ["Forums", "Tips and tricks sharing", "Tournament organization"], | |
| }, | |
| "🎖️ Competitive Scene": { | |
| "Scrabble Tournaments": ["Official rules", "National and international", "Professional rankings"], | |
| "Crossword Competitions": ["Speed solving", "Puzzle variety", "Prizes and recognition"], | |
| "Wordle Challenges": ["Streaks", "Perfect scores", "Community leaderboards"], | |
| }, | |
| "📚 Lore & Background": { | |
| "History of Word Games": ["Evolution over time", "Cultural significance", "Famous games"], | |
| "Iconic Word Game Creators": ["Creators and designers", "Inspirational stories", "Game development"], | |
| "Word Games in Literature": ["Literary puzzles", "Wordplay in writing", "Famous examples"], | |
| }, | |
| "🛠️ Resources & Development": { | |
| "Game Creation Tools": ["Word game generators", "Puzzle design software", "Community mods"], | |
| "Educational Resources": ["Vocabulary lists", "Word game strategies", "Learning methodologies"], | |
| "Digital Platforms": ["App development", "Online game hosting", "Social media integration"], | |
| }, | |
| } | |
| def search_glossary(query): | |
| for category, terms in roleplaying_glossary.items(): | |
| if query.lower() in (term.lower() for term in terms): | |
| st.markdown(f"#### {category}") | |
| st.write(f"- {query}") | |
| query = PromptPrefix + query # Add prompt preface for method step task behavior | |
| st.write('## ' + query) | |
| all="" | |
| st.write('## 🔍 Running with GPT.') # ------------------------------------------------------------------------------------------------- | |
| response = chat_with_model(query) | |
| #st.write(response) | |
| filename = generate_filename(query + ' --- ' + response, "md") | |
| create_file(filename, query, response, should_save) | |
| #st.write('## 🔍 Running with Llama.') # ------------------------------------------------------------------------------------------------- | |
| #response2 = StreamLLMChatResponse(query) | |
| #st.write(response2) | |
| #filename_txt = generate_filename(query + ' --- ' + response2, "md") | |
| #create_file(filename_txt, query, response2, should_save) | |
| all = '# Query: ' + query + '# Response: ' + response | |
| filename_txt2 = generate_filename(query + ' --- ' + all, "md") | |
| create_file(filename_txt2, query, all, should_save) | |
| SpeechSynthesis(all) | |
| return all | |
| # Function to display the glossary in a structured format | |
| def display_glossary(glossary, area): | |
| if area in glossary: | |
| st.subheader(f"📘 Glossary for {area}") | |
| for game, terms in glossary[area].items(): | |
| st.markdown(f"### {game}") | |
| for idx, term in enumerate(terms, start=1): | |
| st.write(f"{idx}. {term}") | |
| # Function to display the entire glossary in a grid format with links | |
| def display_glossary_grid(roleplaying_glossary): | |
| search_urls = { | |
| "📖": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", | |
| "🔍": lambda k: f"https://www.google.com/search?q={quote(k)}", | |
| "▶️": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", | |
| "🔎": lambda k: f"https://www.bing.com/search?q={quote(k)}", | |
| "🎲": lambda k: f"https://huggingface.co/spaces/awacke1/MixableWordGameAI?q={quote(k)}", # this url plus query! | |
| } | |
| for category, details in roleplaying_glossary.items(): | |
| st.write(f"### {category}") | |
| cols = st.columns(len(details)) # Create dynamic columns based on the number of games | |
| for idx, (game, terms) in enumerate(details.items()): | |
| with cols[idx]: | |
| st.markdown(f"#### {game}") | |
| for term in terms: | |
| links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) | |
| st.markdown(f"{term} {links_md}", unsafe_allow_html=True) | |
| game_emojis = { | |
| "Dungeons and Dragons": "🐉", | |
| "Call of Cthulhu": "🐙", | |
| "GURPS": "🎲", | |
| "Pathfinder": "🗺️", | |
| "Kindred of the East": "🌅", | |
| "Changeling": "🍃", | |
| } | |
| topic_emojis = { | |
| "Core Rulebooks": "📚", | |
| "Maps & Settings": "🗺️", | |
| "Game Mechanics & Tools": "⚙️", | |
| "Monsters & Adversaries": "👹", | |
| "Campaigns & Adventures": "📜", | |
| "Creatives & Assets": "🎨", | |
| "Game Master Resources": "🛠️", | |
| "Lore & Background": "📖", | |
| "Character Development": "🧍", | |
| "Homebrew Content": "🔧", | |
| "General Topics": "🌍", | |
| } | |
| # Adjusted display_buttons_with_scores function | |
| def display_buttons_with_scores(): | |
| for category, games in roleplaying_glossary.items(): | |
| category_emoji = topic_emojis.get(category, "🔍") # Default to search icon if no match | |
| st.markdown(f"## {category_emoji} {category}") | |
| for game, terms in games.items(): | |
| game_emoji = game_emojis.get(game, "🎮") # Default to generic game controller if no match | |
| for term in terms: | |
| key = f"{category}_{game}_{term}".replace(' ', '_').lower() | |
| score = load_score(key) | |
| if st.button(f"{game_emoji} {term} {score}", key=key): | |
| update_score(key) | |
| # Create a dynamic query incorporating emojis and formatting for clarity | |
| query_prefix = f"{category_emoji} {game_emoji} **{game} - {category}:**" | |
| # ---------------------------------------------------------------------------------------------- | |
| #query_body = f"Create a detailed outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements." | |
| query_body = f"Create a streamlit python app.py that produces a detailed markdown outline and CSV dataset user interface with an outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements." | |
| response = search_glossary(query_prefix + query_body) | |
| def fetch_wikipedia_summary(keyword): | |
| # Placeholder function for fetching Wikipedia summaries | |
| # In a real app, you might use requests to fetch from the Wikipedia API | |
| return f"Summary for {keyword}. For more information, visit Wikipedia." | |
| def create_search_url_youtube(keyword): | |
| base_url = "https://www.youtube.com/results?search_query=" | |
| return base_url + keyword.replace(' ', '+') | |
| def create_search_url_bing(keyword): | |
| base_url = "https://www.bing.com/search?q=" | |
| return base_url + keyword.replace(' ', '+') | |
| def create_search_url_wikipedia(keyword): | |
| base_url = "https://www.wikipedia.org/search-redirect.php?family=wikipedia&language=en&search=" | |
| return base_url + keyword.replace(' ', '+') | |
| def create_search_url_google(keyword): | |
| base_url = "https://www.google.com/search?q=" | |
| return base_url + keyword.replace(' ', '+') | |
| def create_search_url_ai(keyword): | |
| base_url = "https://huggingface.co/spaces/awacke1/MixableWordGameAI?q=" | |
| return base_url + keyword.replace(' ', '+') | |
| def display_images_and_wikipedia_summaries(): | |
| st.title('Gallery with Related Stories') | |
| image_files = [f for f in os.listdir('.') if f.endswith('.png')] | |
| if not image_files: | |
| st.write("No PNG images found in the current directory.") | |
| return | |
| for image_file in image_files: | |
| image = Image.open(image_file) | |
| st.image(image, caption=image_file, use_column_width=True) | |
| keyword = image_file.split('.')[0] # Assumes keyword is the file name without extension | |
| # Display Wikipedia and Google search links | |
| wikipedia_url = create_search_url_wikipedia(keyword) | |
| google_url = create_search_url_google(keyword) | |
| youtube_url = create_search_url_youtube(keyword) | |
| bing_url = create_search_url_bing(keyword) | |
| ai_url = create_search_url_ai(keyword) | |
| links_md = f""" | |
| [Wikipedia]({wikipedia_url}) | | |
| [Google]({google_url}) | | |
| [YouTube]({youtube_url}) | | |
| [Bing]({bing_url}) | | |
| [AI]({ai_url}) | |
| """ | |
| st.markdown(links_md) | |
| def get_all_query_params(key): | |
| return st.query_params().get(key, []) | |
| def clear_query_params(): | |
| st.query_params() | |
| # Function to display content or image based on a query | |
| def display_content_or_image(query): | |
| # Check if the query matches any glossary term | |
| for category, terms in transhuman_glossary.items(): | |
| for term in terms: | |
| if query.lower() in term.lower(): | |
| st.subheader(f"Found in {category}:") | |
| st.write(term) | |
| return True # Return after finding and displaying the first match | |
| # Check for an image match in a predefined directory (adjust path as needed) | |
| image_dir = "images" # Example directory where images are stored | |
| image_path = f"{image_dir}/{query}.png" # Construct image path with query | |
| if os.path.exists(image_path): | |
| st.image(image_path, caption=f"Image for {query}") | |
| return True | |
| # If no content or image is found | |
| st.warning("No matching content or image found.") | |
| return False | |
| # Imports | |
| import base64 | |
| import glob | |
| import json | |
| import math | |
| import openai | |
| import os | |
| import pytz | |
| import re | |
| import requests | |
| import streamlit as st | |
| import textract | |
| import time | |
| import zipfile | |
| import huggingface_hub | |
| import dotenv | |
| from audio_recorder_streamlit import audio_recorder | |
| from bs4 import BeautifulSoup | |
| from collections import deque | |
| from datetime import datetime | |
| from dotenv import load_dotenv | |
| from huggingface_hub import InferenceClient | |
| from io import BytesIO | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.embeddings import OpenAIEmbeddings | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.vectorstores import FAISS | |
| from openai import ChatCompletion | |
| from PyPDF2 import PdfReader | |
| from templates import bot_template, css, user_template | |
| from xml.etree import ElementTree as ET | |
| import streamlit.components.v1 as components # Import Streamlit Components for HTML5 | |
| def add_Med_Licensing_Exam_Dataset(): | |
| import streamlit as st | |
| from datasets import load_dataset | |
| dataset = load_dataset("augtoma/usmle_step_1")['test'] # Using 'test' split | |
| st.title("USMLE Step 1 Dataset Viewer") | |
| if len(dataset) == 0: | |
| st.write("😢 The dataset is empty.") | |
| else: | |
| st.write(""" | |
| 🔍 Use the search box to filter questions or use the grid to scroll through the dataset. | |
| """) | |
| # 👩🔬 Search Box | |
| search_term = st.text_input("Search for a specific question:", "") | |
| # 🎛 Pagination | |
| records_per_page = 100 | |
| num_records = len(dataset) | |
| num_pages = max(int(num_records / records_per_page), 1) | |
| # Skip generating the slider if num_pages is 1 (i.e., all records fit in one page) | |
| if num_pages > 1: | |
| page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1))) | |
| else: | |
| page_number = 1 # Only one page | |
| # 📊 Display Data | |
| start_idx = (page_number - 1) * records_per_page | |
| end_idx = start_idx + records_per_page | |
| # 🧪 Apply the Search Filter | |
| filtered_data = [] | |
| for record in dataset[start_idx:end_idx]: | |
| if isinstance(record, dict) and 'text' in record and 'id' in record: | |
| if search_term: | |
| if search_term.lower() in record['text'].lower(): | |
| st.markdown(record) | |
| filtered_data.append(record) | |
| else: | |
| filtered_data.append(record) | |
| # 🌐 Render the Grid | |
| for record in filtered_data: | |
| st.write(f"## Question ID: {record['id']}") | |
| st.write(f"### Question:") | |
| st.write(f"{record['text']}") | |
| st.write(f"### Answer:") | |
| st.write(f"{record['answer']}") | |
| st.write("---") | |
| st.write(f"😊 Total Records: {num_records} | 📄 Displaying {start_idx+1} to {min(end_idx, num_records)}") | |
| # 1. Constants and Top Level UI Variables | |
| # My Inference API Copy | |
| API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama | |
| # Meta's Original - Chat HF Free Version: | |
| #API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf" | |
| API_KEY = os.getenv('API_KEY') | |
| MODEL1="meta-llama/Llama-2-7b-chat-hf" | |
| MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf" | |
| HF_KEY = os.getenv('HF_KEY') | |
| headers = { | |
| "Authorization": f"Bearer {HF_KEY}", | |
| "Content-Type": "application/json" | |
| } | |
| key = os.getenv('OPENAI_API_KEY') | |
| prompt = f"Write instructions to teach discharge planning along with guidelines and patient education. List entities, features and relationships to CCDA and FHIR objects in boldface." | |
| should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.") | |
| # 2. Prompt label button demo for LLM | |
| def add_witty_humor_buttons(): | |
| with st.expander("Wit and Humor 🤣", expanded=True): | |
| # Tip about the Dromedary family | |
| st.markdown("🔬 **Fun Fact**: Dromedaries, part of the camel family, have a single hump and are adapted to arid environments. Their 'superpowers' include the ability to survive without water for up to 7 days, thanks to their specialized blood cells and water storage in their hump.") | |
| # Define button descriptions | |
| descriptions = { | |
| "Generate Limericks 😂": "Write ten random adult limericks based on quotes that are tweet length and make you laugh 🎭", | |
| "Wise Quotes 🧙": "Generate ten wise quotes that are tweet length 🦉", | |
| "Funny Rhymes 🎤": "Create ten funny rhymes that are tweet length 🎶", | |
| "Medical Jokes 💉": "Create ten medical jokes that are tweet length 🏥", | |
| "Minnesota Humor ❄️": "Create ten jokes about Minnesota that are tweet length 🌨️", | |
| "Top Funny Stories 📖": "Create ten funny stories that are tweet length 📚", | |
| "More Funny Rhymes 🎙️": "Create ten more funny rhymes that are tweet length 🎵" | |
| } | |
| # Create columns | |
| col1, col2, col3 = st.columns([1, 1, 1], gap="small") | |
| # Add buttons to columns | |
| if col1.button("Wise Limericks 😂"): | |
| StreamLLMChatResponse(descriptions["Generate Limericks 😂"]) | |
| if col2.button("Wise Quotes 🧙"): | |
| StreamLLMChatResponse(descriptions["Wise Quotes 🧙"]) | |
| #if col3.button("Funny Rhymes 🎤"): | |
| # StreamLLMChatResponse(descriptions["Funny Rhymes 🎤"]) | |
| col4, col5, col6 = st.columns([1, 1, 1], gap="small") | |
| if col4.button("Top Ten Funniest Clean Jokes 💉"): | |
| StreamLLMChatResponse(descriptions["Top Ten Funniest Clean Jokes 💉"]) | |
| if col5.button("Minnesota Humor ❄️"): | |
| StreamLLMChatResponse(descriptions["Minnesota Humor ❄️"]) | |
| if col6.button("Origins of Medical Science True Stories"): | |
| StreamLLMChatResponse(descriptions["Origins of Medical Science True Stories"]) | |
| col7 = st.columns(1, gap="small") | |
| if col7[0].button("Top Ten Best Write a streamlit python program prompts to build AI programs. 🎙️"): | |
| StreamLLMChatResponse(descriptions["Top Ten Best Write a streamlit python program prompts to build AI programs. 🎙️"]) | |
| def SpeechSynthesis(result): | |
| documentHTML5=''' | |
| <!DOCTYPE html> | |
| <html> | |
| <head> | |
| <title>Read It Aloud</title> | |
| <script type="text/javascript"> | |
| function readAloud() { | |
| const text = document.getElementById("textArea").value; | |
| const speech = new SpeechSynthesisUtterance(text); | |
| window.speechSynthesis.speak(speech); | |
| } | |
| </script> | |
| </head> | |
| <body> | |
| <h1>🔊 Read It Aloud</h1> | |
| <textarea id="textArea" rows="10" cols="80"> | |
| ''' | |
| documentHTML5 = documentHTML5 + result | |
| documentHTML5 = documentHTML5 + ''' | |
| </textarea> | |
| <br> | |
| <button onclick="readAloud()">🔊 Read Aloud</button> | |
| </body> | |
| </html> | |
| ''' | |
| components.html(documentHTML5, width=1280, height=300) | |
| #return result | |
| # 3. Stream Llama Response | |
| # @st.cache_resource | |
| def StreamLLMChatResponse(prompt): | |
| try: | |
| endpoint_url = API_URL | |
| hf_token = API_KEY | |
| st.write('Running client ' + endpoint_url) | |
| client = InferenceClient(endpoint_url, token=hf_token) | |
| gen_kwargs = dict( | |
| max_new_tokens=512, | |
| top_k=30, | |
| top_p=0.9, | |
| temperature=0.2, | |
| repetition_penalty=1.02, | |
| stop_sequences=["\nUser:", "<|endoftext|>", "</s>"], | |
| ) | |
| stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs) | |
| report=[] | |
| res_box = st.empty() | |
| collected_chunks=[] | |
| collected_messages=[] | |
| allresults='' | |
| for r in stream: | |
| if r.token.special: | |
| continue | |
| if r.token.text in gen_kwargs["stop_sequences"]: | |
| break | |
| collected_chunks.append(r.token.text) | |
| chunk_message = r.token.text | |
| collected_messages.append(chunk_message) | |
| try: | |
| report.append(r.token.text) | |
| if len(r.token.text) > 0: | |
| result="".join(report).strip() | |
| res_box.markdown(f'*{result}*') | |
| except: | |
| st.write('Stream llm issue') | |
| SpeechSynthesis(result) | |
| return result | |
| except: | |
| st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).') | |
| # 4. Run query with payload | |
| def query(payload): | |
| response = requests.post(API_URL, headers=headers, json=payload) | |
| st.markdown(response.json()) | |
| return response.json() | |
| def get_output(prompt): | |
| return query({"inputs": prompt}) | |
| # 5. Auto name generated output files from time and content | |
| def generate_filename(prompt, file_type): | |
| central = pytz.timezone('US/Central') | |
| safe_date_time = datetime.now(central).strftime("%m%d_%H%M") | |
| replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
| safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max | |
| #safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45] | |
| return f"{safe_date_time}_{safe_prompt}.{file_type}" | |
| # 6. Speech transcription via OpenAI service | |
| def transcribe_audio(openai_key, file_path, model): | |
| openai.api_key = openai_key | |
| OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" | |
| headers = { | |
| "Authorization": f"Bearer {openai_key}", | |
| } | |
| with open(file_path, 'rb') as f: | |
| data = {'file': f} | |
| st.write('STT transcript ' + OPENAI_API_URL) | |
| response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) | |
| if response.status_code == 200: | |
| st.write(response.json()) | |
| chatResponse = chat_with_model(response.json().get('text'), '') # ************************************* | |
| transcript = response.json().get('text') | |
| filename = generate_filename(transcript, 'txt') | |
| response = chatResponse | |
| user_prompt = transcript | |
| create_file(filename, user_prompt, response, should_save) | |
| return transcript | |
| else: | |
| st.write(response.json()) | |
| st.error("Error in API call.") | |
| return None | |
| # 7. Auto stop on silence audio control for recording WAV files | |
| def save_and_play_audio(audio_recorder): | |
| audio_bytes = audio_recorder(key='audio_recorder') | |
| if audio_bytes: | |
| filename = generate_filename("Recording", "wav") | |
| with open(filename, 'wb') as f: | |
| f.write(audio_bytes) | |
| st.audio(audio_bytes, format="audio/wav") | |
| return filename | |
| return None | |
| # 8. File creator that interprets type and creates output file for text, markdown and code | |
| def create_file(filename, prompt, response, should_save=True): | |
| if not should_save: | |
| return | |
| base_filename, ext = os.path.splitext(filename) | |
| if ext in ['.txt', '.htm', '.md']: | |
| with open(f"{base_filename}.md", 'w') as file: | |
| try: | |
| content = prompt.strip() + '\r\n' + response | |
| file.write(content) | |
| except: | |
| st.write('.') | |
| #has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response) | |
| #has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)) | |
| #if has_python_code: | |
| # python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip() | |
| # with open(f"{base_filename}-Code.py", 'w') as file: | |
| # file.write(python_code) | |
| # with open(f"{base_filename}.md", 'w') as file: | |
| # content = prompt.strip() + '\r\n' + response | |
| # file.write(content) | |
| def truncate_document(document, length): | |
| return document[:length] | |
| def divide_document(document, max_length): | |
| return [document[i:i+max_length] for i in range(0, len(document), max_length)] | |
| # 9. Sidebar with UI controls to review and re-run prompts and continue responses | |
| def get_table_download_link(file_path): | |
| with open(file_path, 'r') as file: | |
| data = file.read() | |
| b64 = base64.b64encode(data.encode()).decode() | |
| file_name = os.path.basename(file_path) | |
| ext = os.path.splitext(file_name)[1] # get the file extension | |
| if ext == '.txt': | |
| mime_type = 'text/plain' | |
| elif ext == '.py': | |
| mime_type = 'text/plain' | |
| elif ext == '.xlsx': | |
| mime_type = 'text/plain' | |
| elif ext == '.csv': | |
| mime_type = 'text/plain' | |
| elif ext == '.htm': | |
| mime_type = 'text/html' | |
| elif ext == '.md': | |
| mime_type = 'text/markdown' | |
| elif ext == '.wav': | |
| mime_type = 'audio/wav' | |
| else: | |
| mime_type = 'application/octet-stream' # general binary data type | |
| href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>' | |
| return href | |
| def CompressXML(xml_text): | |
| root = ET.fromstring(xml_text) | |
| for elem in list(root.iter()): | |
| if isinstance(elem.tag, str) and 'Comment' in elem.tag: | |
| elem.parent.remove(elem) | |
| return ET.tostring(root, encoding='unicode', method="xml") | |
| # 10. Read in and provide UI for past files | |
| def read_file_content(file,max_length): | |
| if file.type == "application/json": | |
| content = json.load(file) | |
| return str(content) | |
| elif file.type == "text/html" or file.type == "text/htm": | |
| content = BeautifulSoup(file, "html.parser") | |
| return content.text | |
| elif file.type == "application/xml" or file.type == "text/xml": | |
| tree = ET.parse(file) | |
| root = tree.getroot() | |
| xml = CompressXML(ET.tostring(root, encoding='unicode')) | |
| return xml | |
| elif file.type == "text/markdown" or file.type == "text/md": | |
| md = mistune.create_markdown() | |
| content = md(file.read().decode()) | |
| return content | |
| elif file.type == "text/plain": | |
| return file.getvalue().decode() | |
| else: | |
| return "" | |
| # 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS | |
| def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'): | |
| model = model_choice | |
| conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] | |
| conversation.append({'role': 'user', 'content': prompt}) | |
| if len(document_section)>0: | |
| conversation.append({'role': 'assistant', 'content': document_section}) | |
| start_time = time.time() | |
| report = [] | |
| res_box = st.empty() | |
| collected_chunks = [] | |
| collected_messages = [] | |
| st.write('LLM stream ' + 'gpt-3.5-turbo') | |
| for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True): | |
| collected_chunks.append(chunk) | |
| chunk_message = chunk['choices'][0]['delta'] | |
| collected_messages.append(chunk_message) | |
| content=chunk["choices"][0].get("delta",{}).get("content") | |
| try: | |
| report.append(content) | |
| if len(content) > 0: | |
| result = "".join(report).strip() | |
| res_box.markdown(f'*{result}*') | |
| except: | |
| st.write(' ') | |
| full_reply_content = ''.join([m.get('content', '') for m in collected_messages]) | |
| st.write("Elapsed time:") | |
| st.write(time.time() - start_time) | |
| return full_reply_content | |
| # 12. Embedding VectorDB for LLM query of documents to text to compress inputs and prompt together as Chat memory using Langchain | |
| def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): | |
| conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] | |
| conversation.append({'role': 'user', 'content': prompt}) | |
| if len(file_content)>0: | |
| conversation.append({'role': 'assistant', 'content': file_content}) | |
| response = openai.ChatCompletion.create(model=model_choice, messages=conversation) | |
| return response['choices'][0]['message']['content'] | |
| def extract_mime_type(file): | |
| if isinstance(file, str): | |
| pattern = r"type='(.*?)'" | |
| match = re.search(pattern, file) | |
| if match: | |
| return match.group(1) | |
| else: | |
| raise ValueError(f"Unable to extract MIME type from {file}") | |
| elif isinstance(file, streamlit.UploadedFile): | |
| return file.type | |
| else: | |
| raise TypeError("Input should be a string or a streamlit.UploadedFile object") | |
| def extract_file_extension(file): | |
| # get the file name directly from the UploadedFile object | |
| file_name = file.name | |
| pattern = r".*?\.(.*?)$" | |
| match = re.search(pattern, file_name) | |
| if match: | |
| return match.group(1) | |
| else: | |
| raise ValueError(f"Unable to extract file extension from {file_name}") | |
| # Normalize input as text from PDF and other formats | |
| def pdf2txt(docs): | |
| text = "" | |
| for file in docs: | |
| file_extension = extract_file_extension(file) | |
| st.write(f"File type extension: {file_extension}") | |
| if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']: | |
| text += file.getvalue().decode('utf-8') | |
| elif file_extension.lower() == 'pdf': | |
| from PyPDF2 import PdfReader | |
| pdf = PdfReader(BytesIO(file.getvalue())) | |
| for page in range(len(pdf.pages)): | |
| text += pdf.pages[page].extract_text() # new PyPDF2 syntax | |
| return text | |
| def txt2chunks(text): | |
| text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) | |
| return text_splitter.split_text(text) | |
| # Vector Store using FAISS | |
| def vector_store(text_chunks): | |
| embeddings = OpenAIEmbeddings(openai_api_key=key) | |
| return FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
| # Memory and Retrieval chains | |
| def get_chain(vectorstore): | |
| llm = ChatOpenAI() | |
| memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
| return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory) | |
| def process_user_input(user_question): | |
| response = st.session_state.conversation({'question': user_question}) | |
| st.session_state.chat_history = response['chat_history'] | |
| for i, message in enumerate(st.session_state.chat_history): | |
| template = user_template if i % 2 == 0 else bot_template | |
| st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
| filename = generate_filename(user_question, 'txt') | |
| response = message.content | |
| user_prompt = user_question | |
| create_file(filename, user_prompt, response, should_save) | |
| def divide_prompt(prompt, max_length): | |
| words = prompt.split() | |
| chunks = [] | |
| current_chunk = [] | |
| current_length = 0 | |
| for word in words: | |
| if len(word) + current_length <= max_length: | |
| current_length += len(word) + 1 | |
| current_chunk.append(word) | |
| else: | |
| chunks.append(' '.join(current_chunk)) | |
| current_chunk = [word] | |
| current_length = len(word) | |
| chunks.append(' '.join(current_chunk)) | |
| return chunks | |
| # 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it | |
| def create_zip_of_files(files): | |
| zip_name = "all_files.zip" | |
| with zipfile.ZipFile(zip_name, 'w') as zipf: | |
| for file in files: | |
| zipf.write(file) | |
| return zip_name | |
| def get_zip_download_link(zip_file): | |
| with open(zip_file, 'rb') as f: | |
| data = f.read() | |
| b64 = base64.b64encode(data).decode() | |
| href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' | |
| return href | |
| # 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10 | |
| # My Inference Endpoint | |
| API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud' | |
| # Original | |
| API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en" | |
| MODEL2 = "openai/whisper-small.en" | |
| MODEL2_URL = "https://huggingface.co/openai/whisper-small.en" | |
| #headers = { | |
| # "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", | |
| # "Content-Type": "audio/wav" | |
| #} | |
| # HF_KEY = os.getenv('HF_KEY') | |
| HF_KEY = st.secrets['HF_KEY'] | |
| headers = { | |
| "Authorization": f"Bearer {HF_KEY}", | |
| "Content-Type": "audio/wav" | |
| } | |
| #@st.cache_resource | |
| def query(filename): | |
| with open(filename, "rb") as f: | |
| data = f.read() | |
| response = requests.post(API_URL_IE, headers=headers, data=data) | |
| return response.json() | |
| def generate_filename(prompt, file_type): | |
| central = pytz.timezone('US/Central') | |
| safe_date_time = datetime.now(central).strftime("%m%d_%H%M") | |
| replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
| safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] | |
| return f"{safe_date_time}_{safe_prompt}.{file_type}" | |
| # 15. Audio recorder to Wav file | |
| def save_and_play_audio(audio_recorder): | |
| audio_bytes = audio_recorder() | |
| if audio_bytes: | |
| filename = generate_filename("Recording", "wav") | |
| with open(filename, 'wb') as f: | |
| f.write(audio_bytes) | |
| st.audio(audio_bytes, format="audio/wav") | |
| return filename | |
| # 16. Speech transcription to file output | |
| def transcribe_audio(filename): | |
| output = query(filename) | |
| return output | |
| def whisper_main(): | |
| #st.title("Speech to Text") | |
| #st.write("Record your speech and get the text.") | |
| # Audio, transcribe, GPT: | |
| filename = save_and_play_audio(audio_recorder) | |
| if filename is not None: | |
| transcription = transcribe_audio(filename) | |
| try: | |
| transcript = transcription['text'] | |
| st.write(transcript) | |
| except: | |
| transcript='' | |
| st.write(transcript) | |
| # Whisper to GPT: New!! --------------------------------------------------------------------- | |
| st.write('Reasoning with your inputs with GPT..') | |
| response = chat_with_model(transcript) | |
| st.write('Response:') | |
| st.write(response) | |
| filename = generate_filename(response, "txt") | |
| create_file(filename, transcript, response, should_save) | |
| # Whisper to GPT: New!! --------------------------------------------------------------------- | |
| # Whisper to Llama: | |
| response = StreamLLMChatResponse(transcript) | |
| filename_txt = generate_filename(transcript, "md") | |
| create_file(filename_txt, transcript, response, should_save) | |
| filename_wav = filename_txt.replace('.txt', '.wav') | |
| import shutil | |
| try: | |
| if os.path.exists(filename): | |
| shutil.copyfile(filename, filename_wav) | |
| except: | |
| st.write('.') | |
| if os.path.exists(filename): | |
| os.remove(filename) | |
| #st.experimental_rerun() | |
| #except: | |
| # st.write('Starting Whisper Model on GPU. Please retry in 30 seconds.') | |
| # Sample function to demonstrate a response, replace with your own logic | |
| def StreamMedChatResponse(topic): | |
| st.write(f"Showing resources or questions related to: {topic}") | |
| def add_medical_exam_buttons(): | |
| # Medical exam terminology descriptions | |
| descriptions = { | |
| "White Blood Cells 🌊": "3 Q&A with emojis about types, facts, function, inputs and outputs of white blood cells 🎥", | |
| "CT Imaging🦠": "3 Q&A with emojis on CT Imaging post surgery, how to, what to look for 💊", | |
| "Hematoma 💉": "3 Q&A with emojis about hematoma and infection care and study including bacteria cultures and tests or labs💪", | |
| "Post Surgery Wound Care 🍌": "3 Q&A with emojis on wound care, and good bedside manner 🩸", | |
| "Healing and humor 💊": "3 Q&A with emojis on stories and humor about healing and caregiving 🚑", | |
| "Psychology of bedside manner 🧬": "3 Q&A with emojis on bedside manner and how to make patients feel at ease🛠", | |
| "CT scan 💊": "3 Q&A with analysis on infection using CT scan and packing for skin, cellulitus and fascia 🩺" | |
| } | |
| # Expander for medical topics | |
| with st.expander("Medical Licensing Exam Topics 📚", expanded=False): | |
| st.markdown("🩺 **Important**: Variety of topics for medical licensing exams.") | |
| # Create buttons for each description with unique keys | |
| for idx, (label, content) in enumerate(descriptions.items()): | |
| button_key = f"button_{idx}" | |
| if st.button(label, key=button_key): | |
| st.write(f"Running {label}") | |
| input='Create markdown outline for definition of topic ' + label + ' also short quiz with appropriate emojis and definitions for: ' + content | |
| response=StreamLLMChatResponse(input) | |
| filename = generate_filename(response, 'txt') | |
| create_file(filename, input, response, should_save) | |
| # 17. Main | |
| def main(): | |
| prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each." | |
| # Add Wit and Humor buttons | |
| # add_witty_humor_buttons() | |
| # add_medical_exam_buttons() | |
| with st.expander("Prompts 📚", expanded=False): | |
| example_input = st.text_input("Enter your prompt text for Llama:", value=prompt, help="Enter text to get a response from DromeLlama.") | |
| if st.button("Run Prompt With Llama model", help="Click to run the prompt."): | |
| try: | |
| response=StreamLLMChatResponse(example_input) | |
| create_file(filename, example_input, response, should_save) | |
| except: | |
| st.write('Llama model is asleep. Starting now on A10 GPU. Please wait one minute then retry. KEDA triggered.') | |
| openai.api_key = os.getenv('OPENAI_API_KEY') | |
| if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY'] | |
| menu = ["txt", "htm", "xlsx", "csv", "md", "py"] | |
| choice = st.sidebar.selectbox("Output File Type:", menu) | |
| model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) | |
| user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) | |
| collength, colupload = st.columns([2,3]) # adjust the ratio as needed | |
| with collength: | |
| max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) | |
| with colupload: | |
| uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"]) | |
| document_sections = deque() | |
| document_responses = {} | |
| if uploaded_file is not None: | |
| file_content = read_file_content(uploaded_file, max_length) | |
| document_sections.extend(divide_document(file_content, max_length)) | |
| if len(document_sections) > 0: | |
| if st.button("👁️ View Upload"): | |
| st.markdown("**Sections of the uploaded file:**") | |
| for i, section in enumerate(list(document_sections)): | |
| st.markdown(f"**Section {i+1}**\n{section}") | |
| st.markdown("**Chat with the model:**") | |
| for i, section in enumerate(list(document_sections)): | |
| if i in document_responses: | |
| st.markdown(f"**Section {i+1}**\n{document_responses[i]}") | |
| else: | |
| if st.button(f"Chat about Section {i+1}"): | |
| st.write('Reasoning with your inputs...') | |
| #response = chat_with_model(user_prompt, section, model_choice) | |
| st.write('Response:') | |
| st.write(response) | |
| document_responses[i] = response | |
| filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) | |
| create_file(filename, user_prompt, response, should_save) | |
| st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) | |
| if st.button('💬 Chat'): | |
| st.write('Reasoning with your inputs...') | |
| user_prompt_sections = divide_prompt(user_prompt, max_length) | |
| full_response = '' | |
| for prompt_section in user_prompt_sections: | |
| response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice) | |
| full_response += response + '\n' # Combine the responses | |
| response = full_response | |
| st.write('Response:') | |
| st.write(response) | |
| filename = generate_filename(user_prompt, choice) | |
| create_file(filename, user_prompt, response, should_save) | |
| # Compose a file sidebar of markdown md files: | |
| all_files = glob.glob("*.md") | |
| all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names | |
| all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order | |
| if st.sidebar.button("🗑 Delete All Text"): | |
| for file in all_files: | |
| os.remove(file) | |
| st.experimental_rerun() | |
| if st.sidebar.button("⬇️ Download All"): | |
| zip_file = create_zip_of_files(all_files) | |
| st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) | |
| file_contents='' | |
| next_action='' | |
| for file in all_files: | |
| col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed | |
| with col1: | |
| if st.button("🌐", key="md_"+file): # md emoji button | |
| with open(file, 'r') as f: | |
| file_contents = f.read() | |
| next_action='md' | |
| with col2: | |
| st.markdown(get_table_download_link(file), unsafe_allow_html=True) | |
| with col3: | |
| if st.button("📂", key="open_"+file): # open emoji button | |
| with open(file, 'r') as f: | |
| file_contents = f.read() | |
| next_action='open' | |
| with col4: | |
| if st.button("🔍", key="read_"+file): # search emoji button | |
| with open(file, 'r') as f: | |
| file_contents = f.read() | |
| next_action='search' | |
| with col5: | |
| if st.button("🗑", key="delete_"+file): | |
| os.remove(file) | |
| st.experimental_rerun() | |
| if len(file_contents) > 0: | |
| if next_action=='open': | |
| file_content_area = st.text_area("File Contents:", file_contents, height=500) | |
| if next_action=='md': | |
| st.markdown(file_contents) | |
| buttonlabel = '🔍Run with Llama and GPT.' | |
| if st.button(key='RunWithLlamaandGPT', label = buttonlabel): | |
| user_prompt = file_contents | |
| # Llama versus GPT Battle! | |
| all="" | |
| try: | |
| st.write('🔍Running with Llama.') | |
| response = StreamLLMChatResponse(file_contents) | |
| filename = generate_filename(user_prompt, "md") | |
| create_file(filename, file_contents, response, should_save) | |
| all=response | |
| #SpeechSynthesis(response) | |
| except: | |
| st.markdown('Llama is sleeping. Restart ETA 30 seconds.') | |
| # gpt | |
| try: | |
| st.write('🔍Running with GPT.') | |
| response2 = chat_with_model(user_prompt, file_contents, model_choice) | |
| filename2 = generate_filename(file_contents, choice) | |
| create_file(filename2, user_prompt, response, should_save) | |
| all=all+response2 | |
| #SpeechSynthesis(response2) | |
| except: | |
| st.markdown('GPT is sleeping. Restart ETA 30 seconds.') | |
| SpeechSynthesis(all) | |
| if next_action=='search': | |
| file_content_area = st.text_area("File Contents:", file_contents, height=500) | |
| st.write('🔍Running with Llama and GPT.') | |
| user_prompt = file_contents | |
| # Llama versus GPT Battle! | |
| all="" | |
| try: | |
| st.write('🔍Running with Llama.') | |
| response = StreamLLMChatResponse(file_contents) | |
| filename = generate_filename(user_prompt, ".md") | |
| create_file(filename, file_contents, response, should_save) | |
| all=response | |
| #SpeechSynthesis(response) | |
| except: | |
| st.markdown('Llama is sleeping. Restart ETA 30 seconds.') | |
| # gpt | |
| try: | |
| st.write('🔍Running with GPT.') | |
| response2 = chat_with_model(user_prompt, file_contents, model_choice) | |
| filename2 = generate_filename(file_contents, choice) | |
| create_file(filename2, user_prompt, response, should_save) | |
| all=all+response2 | |
| #SpeechSynthesis(response2) | |
| except: | |
| st.markdown('GPT is sleeping. Restart ETA 30 seconds.') | |
| SpeechSynthesis(all) | |
| # Function to encode file to base64 | |
| def get_base64_encoded_file(file_path): | |
| with open(file_path, "rb") as file: | |
| return base64.b64encode(file.read()).decode() | |
| # Function to create a download link | |
| def get_audio_download_link(file_path): | |
| base64_file = get_base64_encoded_file(file_path) | |
| return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">⬇️ Download Audio</a>' | |
| # Compose a file sidebar of past encounters | |
| all_files = glob.glob("*.wav") | |
| all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names | |
| all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order | |
| filekey = 'delall' | |
| if st.sidebar.button("🗑 Delete All Audio", key=filekey): | |
| for file in all_files: | |
| os.remove(file) | |
| st.experimental_rerun() | |
| for file in all_files: | |
| col1, col2 = st.sidebar.columns([6, 1]) # adjust the ratio as needed | |
| with col1: | |
| st.markdown(file) | |
| if st.button("🎵", key="play_" + file): # play emoji button | |
| audio_file = open(file, 'rb') | |
| audio_bytes = audio_file.read() | |
| st.audio(audio_bytes, format='audio/wav') | |
| #st.markdown(get_audio_download_link(file), unsafe_allow_html=True) | |
| #st.text_input(label="", value=file) | |
| with col2: | |
| if st.button("🗑", key="delete_" + file): | |
| os.remove(file) | |
| st.experimental_rerun() | |
| # Feedback | |
| # Step: Give User a Way to Upvote or Downvote | |
| GiveFeedback=False | |
| if GiveFeedback: | |
| with st.expander("Give your feedback 👍", expanded=False): | |
| feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote")) | |
| if feedback == "👍 Upvote": | |
| st.write("You upvoted 👍. Thank you for your feedback!") | |
| else: | |
| st.write("You downvoted 👎. Thank you for your feedback!") | |
| load_dotenv() | |
| st.write(css, unsafe_allow_html=True) | |
| st.header("Chat with documents :books:") | |
| user_question = st.text_input("Ask a question about your documents:") | |
| if user_question: | |
| process_user_input(user_question) | |
| with st.sidebar: | |
| st.subheader("Your documents") | |
| docs = st.file_uploader("import documents", accept_multiple_files=True) | |
| with st.spinner("Processing"): | |
| raw = pdf2txt(docs) | |
| if len(raw) > 0: | |
| length = str(len(raw)) | |
| text_chunks = txt2chunks(raw) | |
| vectorstore = vector_store(text_chunks) | |
| st.session_state.conversation = get_chain(vectorstore) | |
| st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing | |
| filename = generate_filename(raw, 'txt') | |
| create_file(filename, raw, '', should_save) | |
| # Relocated! Hope you like your new space - enjoy! | |
| # Display instructions and handle query parameters | |
| #st.markdown("## Glossary Lookup\nEnter a term in the URL query, like `?q=Nanotechnology` or `?query=Martian Syndicate`.") | |
| st.markdown(''' | |
| ### Mixable Word Game AI 📖✨🔍 | |
| - **Unlock the Power of Words with Mixable Word Game AI:** Transform your vocabulary with an AI that brings words to life. | |
| - **Capabilities:** Generates comprehensive glossaries and thrilling challenges. | |
| - **Experience:** Your key to becoming a word wizard, enhancing your language skills. | |
| - **Query Parameter Usage:** Enter a vocabulary term in the URL query, like `?q=Palindrome` or `?query=Anagram`, to explore new word game challenges. | |
| ''') | |
| try: | |
| query_params = st.query_params | |
| #query = (query_params.get('q') or query_params.get('query') or [''])[0] | |
| query = (query_params.get('q') or query_params.get('query') or ['']) | |
| st.markdown('# Running query: ' + query) | |
| if query: search_glossary(query) | |
| except: | |
| st.markdown('No glossary lookup') | |
| # Display the glossary grid | |
| st.title("Word Games 🎲") | |
| display_images_and_wikipedia_summaries() | |
| display_glossary_grid(roleplaying_glossary) | |
| st.title("🎲🗺️ Word Game Universe") | |
| st.markdown("## Explore the vast universes of Dungeons and Dragons, Call of Cthulhu, GURPS, and more through interactive storytelling and encyclopedic knowledge.🌠") | |
| display_buttons_with_scores() | |
| # Assuming the transhuman_glossary and other setup code remains the same | |
| #st.write("Current Query Parameters:", st.query_params) | |
| #st.markdown("### Query Parameters - These Deep Link Map to Remixable Methods, Navigate or Trigger Functionalities") | |
| # Example: Using query parameters to navigate or trigger functionalities | |
| if 'action' in st.query_params: | |
| action = st.query_params()['action'][0] # Get the first (or only) 'action' parameter | |
| if action == 'show_message': | |
| st.success("Showing a message because 'action=show_message' was found in the URL.") | |
| elif action == 'clear': | |
| clear_query_params() | |
| st.experimental_rerun() | |
| # Handling repeated keys | |
| if 'multi' in st.query_params: | |
| multi_values = get_all_query_params('multi') | |
| st.write("Values for 'multi':", multi_values) | |
| # Manual entry for demonstration | |
| st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2") | |
| if 'query' in st.query_params: | |
| query = st.query_params['query'][0] # Get the query parameter | |
| # Display content or image based on the query | |
| display_content_or_image(query) | |
| # Add a clear query parameters button for convenience | |
| if st.button("Clear Query Parameters", key='ClearQueryParams'): | |
| # This will clear the browser URL's query parameters | |
| st.experimental_set_query_params | |
| st.experimental_rerun() | |
| # 18. Run AI Pipeline | |
| if __name__ == "__main__": | |
| whisper_main() | |
| main() |