heheyas
init
cfb7702
import math
import os
from glob import glob
from pathlib import Path
from typing import Optional
import cv2
import numpy as np
import torch
from einops import rearrange, repeat
from fire import Fire
import tyro
from omegaconf import OmegaConf
from PIL import Image
from torchvision.transforms import ToTensor
from mediapy import write_video
import rembg
from kiui.op import recenter
from safetensors.torch import load_file as load_safetensors
from typing import Any
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering
from sgm.inference.helpers import embed_watermark
from sgm.util import default, instantiate_from_config
def get_unique_embedder_keys_from_conditioner(conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(keys, value_dict, N, T, device):
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames":
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
elif key == "cond_frames_without_noise":
batch[key] = repeat(
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
)
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def load_model(
config: str,
device: str,
num_frames: int,
num_steps: int,
ckpt_path: Optional[str] = None,
min_cfg: Optional[float] = None,
max_cfg: Optional[float] = None,
sigma_max: Optional[float] = None,
):
config = OmegaConf.load(config)
config.model.params.sampler_config.params.num_steps = num_steps
config.model.params.sampler_config.params.guider_config.params.num_frames = (
num_frames
)
if max_cfg is not None:
config.model.params.sampler_config.params.guider_config.params.max_scale = (
max_cfg
)
if min_cfg is not None:
config.model.params.sampler_config.params.guider_config.params.min_scale = (
min_cfg
)
if sigma_max is not None:
print("Overriding sigma_max to ", sigma_max)
config.model.params.sampler_config.params.discretization_config.params.sigma_max = (
sigma_max
)
config.model.params.from_scratch = False
if ckpt_path is not None:
config.model.params.ckpt_path = str(ckpt_path)
if device == "cuda":
with torch.device(device):
model = instantiate_from_config(config.model).to(device).eval()
else:
model = instantiate_from_config(config.model).to(device).eval()
return model, None
def sample_one(
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
checkpoint_path: Optional[str] = None,
num_frames: Optional[int] = None,
num_steps: Optional[int] = None,
fps_id: int = 1,
motion_bucket_id: int = 300,
cond_aug: float = 0.02,
seed: int = 23,
decoding_t: int = 24, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: Optional[str] = None,
noise: torch.Tensor = None,
save: bool = False,
cached_model: Any = None,
border_ratio: float = 0.3,
min_guidance_scale: float = 3.5,
max_guidance_scale: float = 3.5,
sigma_max: float = None,
ignore_alpha: bool = False,
):
model_config = "scripts/pub/configs/V3D_512.yaml"
num_frames = OmegaConf.load(
model_config
).model.params.sampler_config.params.guider_config.params.num_frames
print("Detected num_frames:", num_frames)
num_steps = default(num_steps, 25)
output_folder = default(output_folder, f"outputs/V3D_512")
decoding_t = min(decoding_t, num_frames)
sd = load_safetensors("./ckpts/svd_xt.safetensors")
clip_model_config = OmegaConf.load("configs/embedder/clip_image.yaml")
clip_model = instantiate_from_config(clip_model_config).eval()
clip_sd = dict()
for k, v in sd.items():
if "conditioner.embedders.0" in k:
clip_sd[k.replace("conditioner.embedders.0.", "")] = v
clip_model.load_state_dict(clip_sd)
clip_model = clip_model.to(device)
ae_model_config = OmegaConf.load("configs/ae/video.yaml")
ae_model = instantiate_from_config(ae_model_config).eval()
encoder_sd = dict()
for k, v in sd.items():
if "first_stage_model" in k:
encoder_sd[k.replace("first_stage_model.", "")] = v
ae_model.load_state_dict(encoder_sd)
ae_model = ae_model.to(device)
if cached_model is None:
model, filter = load_model(
model_config,
device,
num_frames,
num_steps,
ckpt_path=checkpoint_path,
min_cfg=min_guidance_scale,
max_cfg=max_guidance_scale,
sigma_max=sigma_max,
)
else:
model = cached_model
torch.manual_seed(seed)
need_return = True
path = Path(input_path)
if path.is_file():
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
all_img_paths = [input_path]
else:
raise ValueError("Path is not valid image file.")
elif path.is_dir():
all_img_paths = sorted(
[
f
for f in path.iterdir()
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
]
)
need_return = False
if len(all_img_paths) == 0:
raise ValueError("Folder does not contain any images.")
else:
raise ValueError
for input_path in all_img_paths:
with Image.open(input_path) as image:
# if image.mode == "RGBA":
# image = image.convert("RGB")
w, h = image.size
if border_ratio > 0:
if image.mode != "RGBA" or ignore_alpha:
image = image.convert("RGB")
image = np.asarray(image)
carved_image = rembg.remove(image) # [H, W, 4]
else:
image = np.asarray(image)
carved_image = image
mask = carved_image[..., -1] > 0
image = recenter(carved_image, mask, border_ratio=border_ratio)
image = image.astype(np.float32) / 255.0
if image.shape[-1] == 4:
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
image = Image.fromarray((image * 255).astype(np.uint8))
else:
print("Ignore border ratio")
image = image.resize((512, 512))
image = ToTensor()(image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
value_dict = {}
value_dict["motion_bucket_id"] = motion_bucket_id
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames_without_noise"] = clip_model(image)
value_dict["cond_frames"] = ae_model.encode(image)
value_dict["cond_frames"] += cond_aug * torch.randn_like(
value_dict["cond_frames"]
)
value_dict["cond_aug"] = cond_aug
with torch.no_grad():
with torch.autocast(device):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
randn = torch.randn(shape, device=device) if noise is None else noise
randn = randn.to(device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, num_frames
).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
# writer = cv2.VideoWriter(
# video_path,
# cv2.VideoWriter_fourcc(*"MP4V"),
# fps_id + 1,
# (samples.shape[-1], samples.shape[-2]),
# )
frames = (
(rearrange(samples, "t c h w -> t h w c") * 255)
.cpu()
.numpy()
.astype(np.uint8)
)
if save:
write_video(video_path, frames, fps=3)
images = []
for frame in frames:
images.append(Image.fromarray(frame))
if need_return:
return images, model
if __name__ == "__main__":
tyro.cli(sample_one)