heheyas
init
cfb7702
import sys
import warnings
from bisect import bisect_right
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
from pytorch_lightning.utilities.rank_zero import rank_zero_debug
class ChainedScheduler(lr_scheduler._LRScheduler):
"""Chains list of learning rate schedulers. It takes a list of chainable learning
rate schedulers and performs consecutive step() functions belong to them by just
one call.
Args:
schedulers (list): List of chained schedulers.
Example:
>>> # Assuming optimizer uses lr = 1. for all groups
>>> # lr = 0.09 if epoch == 0
>>> # lr = 0.081 if epoch == 1
>>> # lr = 0.729 if epoch == 2
>>> # lr = 0.6561 if epoch == 3
>>> # lr = 0.59049 if epoch >= 4
>>> scheduler1 = ConstantLR(self.opt, factor=0.1, total_iters=2)
>>> scheduler2 = ExponentialLR(self.opt, gamma=0.9)
>>> scheduler = ChainedScheduler([scheduler1, scheduler2])
>>> for epoch in range(100):
>>> train(...)
>>> validate(...)
>>> scheduler.step()
"""
def __init__(self, optimizer, schedulers):
for scheduler_idx in range(1, len(schedulers)):
if (schedulers[scheduler_idx].optimizer != schedulers[0].optimizer):
raise ValueError(
"ChainedScheduler expects all schedulers to belong to the same optimizer, but "
"got schedulers at index {} and {} to be different".format(0, scheduler_idx)
)
self._schedulers = list(schedulers)
self.optimizer = optimizer
def step(self):
for scheduler in self._schedulers:
scheduler.step()
def state_dict(self):
"""Returns the state of the scheduler as a :class:`dict`.
It contains an entry for every variable in self.__dict__ which
is not the optimizer.
The wrapped scheduler states will also be saved.
"""
state_dict = {key: value for key, value in self.__dict__.items() if key not in ('optimizer', '_schedulers')}
state_dict['_schedulers'] = [None] * len(self._schedulers)
for idx, s in enumerate(self._schedulers):
state_dict['_schedulers'][idx] = s.state_dict()
return state_dict
def load_state_dict(self, state_dict):
"""Loads the schedulers state.
Args:
state_dict (dict): scheduler state. Should be an object returned
from a call to :meth:`state_dict`.
"""
_schedulers = state_dict.pop('_schedulers')
self.__dict__.update(state_dict)
# Restore state_dict keys in order to prevent side effects
# https://github.com/pytorch/pytorch/issues/32756
state_dict['_schedulers'] = _schedulers
for idx, s in enumerate(_schedulers):
self._schedulers[idx].load_state_dict(s)
class SequentialLR(lr_scheduler._LRScheduler):
"""Receives the list of schedulers that is expected to be called sequentially during
optimization process and milestone points that provides exact intervals to reflect
which scheduler is supposed to be called at a given epoch.
Args:
schedulers (list): List of chained schedulers.
milestones (list): List of integers that reflects milestone points.
Example:
>>> # Assuming optimizer uses lr = 1. for all groups
>>> # lr = 0.1 if epoch == 0
>>> # lr = 0.1 if epoch == 1
>>> # lr = 0.9 if epoch == 2
>>> # lr = 0.81 if epoch == 3
>>> # lr = 0.729 if epoch == 4
>>> scheduler1 = ConstantLR(self.opt, factor=0.1, total_iters=2)
>>> scheduler2 = ExponentialLR(self.opt, gamma=0.9)
>>> scheduler = SequentialLR(self.opt, schedulers=[scheduler1, scheduler2], milestones=[2])
>>> for epoch in range(100):
>>> train(...)
>>> validate(...)
>>> scheduler.step()
"""
def __init__(self, optimizer, schedulers, milestones, last_epoch=-1, verbose=False):
for scheduler_idx in range(1, len(schedulers)):
if (schedulers[scheduler_idx].optimizer != schedulers[0].optimizer):
raise ValueError(
"Sequential Schedulers expects all schedulers to belong to the same optimizer, but "
"got schedulers at index {} and {} to be different".format(0, scheduler_idx)
)
if (len(milestones) != len(schedulers) - 1):
raise ValueError(
"Sequential Schedulers expects number of schedulers provided to be one more "
"than the number of milestone points, but got number of schedulers {} and the "
"number of milestones to be equal to {}".format(len(schedulers), len(milestones))
)
self._schedulers = schedulers
self._milestones = milestones
self.last_epoch = last_epoch + 1
self.optimizer = optimizer
def step(self):
self.last_epoch += 1
idx = bisect_right(self._milestones, self.last_epoch)
if idx > 0 and self._milestones[idx - 1] == self.last_epoch:
self._schedulers[idx].step(0)
else:
self._schedulers[idx].step()
def state_dict(self):
"""Returns the state of the scheduler as a :class:`dict`.
It contains an entry for every variable in self.__dict__ which
is not the optimizer.
The wrapped scheduler states will also be saved.
"""
state_dict = {key: value for key, value in self.__dict__.items() if key not in ('optimizer', '_schedulers')}
state_dict['_schedulers'] = [None] * len(self._schedulers)
for idx, s in enumerate(self._schedulers):
state_dict['_schedulers'][idx] = s.state_dict()
return state_dict
def load_state_dict(self, state_dict):
"""Loads the schedulers state.
Args:
state_dict (dict): scheduler state. Should be an object returned
from a call to :meth:`state_dict`.
"""
_schedulers = state_dict.pop('_schedulers')
self.__dict__.update(state_dict)
# Restore state_dict keys in order to prevent side effects
# https://github.com/pytorch/pytorch/issues/32756
state_dict['_schedulers'] = _schedulers
for idx, s in enumerate(_schedulers):
self._schedulers[idx].load_state_dict(s)
class ConstantLR(lr_scheduler._LRScheduler):
"""Decays the learning rate of each parameter group by a small constant factor until the
number of epoch reaches a pre-defined milestone: total_iters. Notice that such decay can
happen simultaneously with other changes to the learning rate from outside this scheduler.
When last_epoch=-1, sets initial lr as lr.
Args:
optimizer (Optimizer): Wrapped optimizer.
factor (float): The number we multiply learning rate until the milestone. Default: 1./3.
total_iters (int): The number of steps that the scheduler decays the learning rate.
Default: 5.
last_epoch (int): The index of the last epoch. Default: -1.
verbose (bool): If ``True``, prints a message to stdout for
each update. Default: ``False``.
Example:
>>> # Assuming optimizer uses lr = 0.05 for all groups
>>> # lr = 0.025 if epoch == 0
>>> # lr = 0.025 if epoch == 1
>>> # lr = 0.025 if epoch == 2
>>> # lr = 0.025 if epoch == 3
>>> # lr = 0.05 if epoch >= 4
>>> scheduler = ConstantLR(self.opt, factor=0.5, total_iters=4)
>>> for epoch in range(100):
>>> train(...)
>>> validate(...)
>>> scheduler.step()
"""
def __init__(self, optimizer, factor=1.0 / 3, total_iters=5, last_epoch=-1, verbose=False):
if factor > 1.0 or factor < 0:
raise ValueError('Constant multiplicative factor expected to be between 0 and 1.')
self.factor = factor
self.total_iters = total_iters
super(ConstantLR, self).__init__(optimizer, last_epoch, verbose)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.", UserWarning)
if self.last_epoch == 0:
return [group['lr'] * self.factor for group in self.optimizer.param_groups]
if (self.last_epoch > self.total_iters or
(self.last_epoch != self.total_iters)):
return [group['lr'] for group in self.optimizer.param_groups]
if (self.last_epoch == self.total_iters):
return [group['lr'] * (1.0 / self.factor) for group in self.optimizer.param_groups]
def _get_closed_form_lr(self):
return [base_lr * (self.factor + (self.last_epoch >= self.total_iters) * (1 - self.factor))
for base_lr in self.base_lrs]
class LinearLR(lr_scheduler._LRScheduler):
"""Decays the learning rate of each parameter group by linearly changing small
multiplicative factor until the number of epoch reaches a pre-defined milestone: total_iters.
Notice that such decay can happen simultaneously with other changes to the learning rate
from outside this scheduler. When last_epoch=-1, sets initial lr as lr.
Args:
optimizer (Optimizer): Wrapped optimizer.
start_factor (float): The number we multiply learning rate in the first epoch.
The multiplication factor changes towards end_factor in the following epochs.
Default: 1./3.
end_factor (float): The number we multiply learning rate at the end of linear changing
process. Default: 1.0.
total_iters (int): The number of iterations that multiplicative factor reaches to 1.
Default: 5.
last_epoch (int): The index of the last epoch. Default: -1.
verbose (bool): If ``True``, prints a message to stdout for
each update. Default: ``False``.
Example:
>>> # Assuming optimizer uses lr = 0.05 for all groups
>>> # lr = 0.025 if epoch == 0
>>> # lr = 0.03125 if epoch == 1
>>> # lr = 0.0375 if epoch == 2
>>> # lr = 0.04375 if epoch == 3
>>> # lr = 0.05 if epoch >= 4
>>> scheduler = LinearLR(self.opt, start_factor=0.5, total_iters=4)
>>> for epoch in range(100):
>>> train(...)
>>> validate(...)
>>> scheduler.step()
"""
def __init__(self, optimizer, start_factor=1.0 / 3, end_factor=1.0, total_iters=5, last_epoch=-1,
verbose=False):
if start_factor > 1.0 or start_factor < 0:
raise ValueError('Starting multiplicative factor expected to be between 0 and 1.')
if end_factor > 1.0 or end_factor < 0:
raise ValueError('Ending multiplicative factor expected to be between 0 and 1.')
self.start_factor = start_factor
self.end_factor = end_factor
self.total_iters = total_iters
super(LinearLR, self).__init__(optimizer, last_epoch, verbose)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.", UserWarning)
if self.last_epoch == 0:
return [group['lr'] * self.start_factor for group in self.optimizer.param_groups]
if (self.last_epoch > self.total_iters):
return [group['lr'] for group in self.optimizer.param_groups]
return [group['lr'] * (1. + (self.end_factor - self.start_factor) /
(self.total_iters * self.start_factor + (self.last_epoch - 1) * (self.end_factor - self.start_factor)))
for group in self.optimizer.param_groups]
def _get_closed_form_lr(self):
return [base_lr * (self.start_factor +
(self.end_factor - self.start_factor) * min(self.total_iters, self.last_epoch) / self.total_iters)
for base_lr in self.base_lrs]
custom_schedulers = ['ConstantLR', 'LinearLR']
def get_scheduler(name):
if hasattr(lr_scheduler, name):
return getattr(lr_scheduler, name)
elif name in custom_schedulers:
return getattr(sys.modules[__name__], name)
else:
raise NotImplementedError
def getattr_recursive(m, attr):
for name in attr.split('.'):
m = getattr(m, name)
return m
def get_parameters(model, name):
module = getattr_recursive(model, name)
if isinstance(module, nn.Module):
return module.parameters()
elif isinstance(module, nn.Parameter):
return module
return []
def parse_optimizer(config, model):
if hasattr(config, 'params'):
params = [{'params': get_parameters(model, name), 'name': name, **args} for name, args in config.params.items()]
rank_zero_debug('Specify optimizer params:', config.params)
else:
params = model.parameters()
if config.name in ['FusedAdam']:
import apex
optim = getattr(apex.optimizers, config.name)(params, **config.args)
else:
optim = getattr(torch.optim, config.name)(params, **config.args)
return optim
def parse_scheduler(config, optimizer):
interval = config.get('interval', 'epoch')
assert interval in ['epoch', 'step']
if config.name == 'SequentialLR':
scheduler = {
'scheduler': SequentialLR(optimizer, [parse_scheduler(conf, optimizer)['scheduler'] for conf in config.schedulers], milestones=config.milestones),
'interval': interval
}
elif config.name == 'Chained':
scheduler = {
'scheduler': ChainedScheduler([parse_scheduler(conf, optimizer)['scheduler'] for conf in config.schedulers]),
'interval': interval
}
else:
scheduler = {
'scheduler': get_scheduler(config.name)(optimizer, **config.args),
'interval': interval
}
return scheduler
def update_module_step(m, epoch, global_step):
if hasattr(m, 'update_step'):
m.update_step(epoch, global_step)