Spaces:
Runtime error
Runtime error
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
import os | |
import random | |
import json | |
from utils.system_utils import searchForMaxIteration | |
from scene.dataset_readers import sceneLoadTypeCallbacks | |
from scene.gaussian_model import GaussianModel | |
from arguments import ModelParams | |
from utils.camera_utils import cameraList_from_camInfos, camera_to_JSON | |
class Scene: | |
gaussians: GaussianModel | |
def __init__( | |
self, | |
args: ModelParams, | |
gaussians: GaussianModel, | |
load_iteration=None, | |
shuffle=True, | |
resolution_scales=[1.0], | |
skip_gaussians=False, | |
): | |
"""b | |
:param path: Path to colmap scene main folder. | |
""" | |
self.model_path = args.model_path | |
self.loaded_iter = None | |
self.gaussians = gaussians | |
if load_iteration: | |
if load_iteration == -1: | |
self.loaded_iter = searchForMaxIteration( | |
os.path.join(self.model_path, "point_cloud") | |
) | |
else: | |
self.loaded_iter = load_iteration | |
print("Loading trained model at iteration {}".format(self.loaded_iter)) | |
self.train_cameras = {} | |
self.test_cameras = {} | |
if os.path.exists(os.path.join(args.source_path, "sparse")): | |
scene_info = sceneLoadTypeCallbacks["Colmap"]( | |
args.source_path, args.images, args.eval | |
) | |
elif os.path.exists(os.path.join(args.source_path, "transforms_train.json")): | |
print("Found transforms_train.json file, assuming Blender data set!") | |
scene_info = sceneLoadTypeCallbacks["Blender"]( | |
args.source_path, args.white_background, args.eval | |
) | |
elif hasattr(args, "num_frames"): | |
print("using video-nvs target") | |
scene_info = sceneLoadTypeCallbacks["VideoNVS"]( | |
args.num_frames, | |
args.radius, | |
args.elevation, | |
args.fov, | |
args.reso, | |
args.images, | |
args.masks, | |
args.num_pts, | |
args.train, | |
) | |
else: | |
assert False, "Could not recognize scene type!" | |
if not self.loaded_iter: | |
with open(scene_info.ply_path, "rb") as src_file, open( | |
os.path.join(self.model_path, "input.ply"), "wb" | |
) as dest_file: | |
dest_file.write(src_file.read()) | |
json_cams = [] | |
camlist = [] | |
if scene_info.test_cameras: | |
camlist.extend(scene_info.test_cameras) | |
if scene_info.train_cameras: | |
camlist.extend(scene_info.train_cameras) | |
for id, cam in enumerate(camlist): | |
json_cams.append(camera_to_JSON(id, cam)) | |
with open(os.path.join(self.model_path, "cameras.json"), "w") as file: | |
json.dump(json_cams, file) | |
if shuffle: | |
random.shuffle( | |
scene_info.train_cameras | |
) # Multi-res consistent random shuffling | |
random.shuffle( | |
scene_info.test_cameras | |
) # Multi-res consistent random shuffling | |
self.cameras_extent = scene_info.nerf_normalization["radius"] | |
for resolution_scale in resolution_scales: | |
print("Loading Training Cameras") | |
self.train_cameras[resolution_scale] = cameraList_from_camInfos( | |
scene_info.train_cameras, resolution_scale, args | |
) | |
print("Loading Test Cameras") | |
self.test_cameras[resolution_scale] = cameraList_from_camInfos( | |
scene_info.test_cameras, resolution_scale, args | |
) | |
if not skip_gaussians: | |
if self.loaded_iter: | |
self.gaussians.load_ply( | |
os.path.join( | |
self.model_path, | |
"point_cloud", | |
"iteration_" + str(self.loaded_iter), | |
"point_cloud.ply", | |
) | |
) | |
else: | |
self.gaussians.create_from_pcd( | |
scene_info.point_cloud, self.cameras_extent | |
) | |
def save(self, iteration): | |
point_cloud_path = os.path.join( | |
self.model_path, "point_cloud/iteration_{}".format(iteration) | |
) | |
self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply")) | |
def getTrainCameras(self, scale=1.0): | |
return self.train_cameras[scale] | |
def getTestCameras(self, scale=1.0): | |
return self.test_cameras[scale] | |