Spaces:
Runtime error
Runtime error
# | |
# Copyright (C) 2023, Inria | |
# GRAPHDECO research group, https://team.inria.fr/graphdeco | |
# All rights reserved. | |
# | |
# This software is free for non-commercial, research and evaluation use | |
# under the terms of the LICENSE.md file. | |
# | |
# For inquiries contact [email protected] | |
# | |
from pathlib import Path | |
import os | |
from PIL import Image | |
import torch | |
import torchvision.transforms.functional as tf | |
from utils.loss_utils import ssim | |
from lpipsPyTorch import lpips | |
import json | |
from tqdm import tqdm | |
from utils.image_utils import psnr | |
from argparse import ArgumentParser | |
def readImages(renders_dir, gt_dir): | |
renders = [] | |
gts = [] | |
image_names = [] | |
for fname in os.listdir(renders_dir): | |
render = Image.open(renders_dir / fname) | |
gt = Image.open(gt_dir / fname) | |
renders.append(tf.to_tensor(render).unsqueeze(0)[:, :3, :, :].cuda()) | |
gts.append(tf.to_tensor(gt).unsqueeze(0)[:, :3, :, :].cuda()) | |
image_names.append(fname) | |
return renders, gts, image_names | |
def evaluate(model_paths): | |
full_dict = {} | |
per_view_dict = {} | |
full_dict_polytopeonly = {} | |
per_view_dict_polytopeonly = {} | |
print("") | |
for scene_dir in model_paths: | |
try: | |
print("Scene:", scene_dir) | |
full_dict[scene_dir] = {} | |
per_view_dict[scene_dir] = {} | |
full_dict_polytopeonly[scene_dir] = {} | |
per_view_dict_polytopeonly[scene_dir] = {} | |
test_dir = Path(scene_dir) / "test" | |
for method in os.listdir(test_dir): | |
print("Method:", method) | |
full_dict[scene_dir][method] = {} | |
per_view_dict[scene_dir][method] = {} | |
full_dict_polytopeonly[scene_dir][method] = {} | |
per_view_dict_polytopeonly[scene_dir][method] = {} | |
method_dir = test_dir / method | |
gt_dir = method_dir / "gt" | |
renders_dir = method_dir / "renders" | |
renders, gts, image_names = readImages(renders_dir, gt_dir) | |
ssims = [] | |
psnrs = [] | |
lpipss = [] | |
for idx in tqdm(range(len(renders)), desc="Metric evaluation progress"): | |
ssims.append(ssim(renders[idx], gts[idx])) | |
psnrs.append(psnr(renders[idx], gts[idx])) | |
lpipss.append(lpips(renders[idx], gts[idx], net_type="vgg")) | |
print(" SSIM : {:>12.7f}".format(torch.tensor(ssims).mean(), ".5")) | |
print(" PSNR : {:>12.7f}".format(torch.tensor(psnrs).mean(), ".5")) | |
print(" LPIPS: {:>12.7f}".format(torch.tensor(lpipss).mean(), ".5")) | |
print("") | |
full_dict[scene_dir][method].update( | |
{ | |
"SSIM": torch.tensor(ssims).mean().item(), | |
"PSNR": torch.tensor(psnrs).mean().item(), | |
"LPIPS": torch.tensor(lpipss).mean().item(), | |
} | |
) | |
per_view_dict[scene_dir][method].update( | |
{ | |
"SSIM": { | |
name: ssim | |
for ssim, name in zip( | |
torch.tensor(ssims).tolist(), image_names | |
) | |
}, | |
"PSNR": { | |
name: psnr | |
for psnr, name in zip( | |
torch.tensor(psnrs).tolist(), image_names | |
) | |
}, | |
"LPIPS": { | |
name: lp | |
for lp, name in zip( | |
torch.tensor(lpipss).tolist(), image_names | |
) | |
}, | |
} | |
) | |
with open(scene_dir + "/results.json", "w") as fp: | |
json.dump(full_dict[scene_dir], fp, indent=True) | |
with open(scene_dir + "/per_view.json", "w") as fp: | |
json.dump(per_view_dict[scene_dir], fp, indent=True) | |
except: | |
print("Unable to compute metrics for model", scene_dir) | |
if __name__ == "__main__": | |
device = torch.device("cuda:0") | |
torch.cuda.set_device(device) | |
# Set up command line argument parser | |
parser = ArgumentParser(description="Training script parameters") | |
parser.add_argument( | |
"--model_paths", "-m", required=True, nargs="+", type=str, default=[] | |
) | |
args = parser.parse_args() | |
evaluate(args.model_paths) | |