heheyas
init
cfb7702
raw
history blame
6.02 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
class WeightedLoss(nn.Module):
@property
def func(self):
raise NotImplementedError
def forward(self, inputs, targets, weight=None, reduction='mean'):
assert reduction in ['none', 'sum', 'mean', 'valid_mean']
loss = self.func(inputs, targets, reduction='none')
if weight is not None:
while weight.ndim < inputs.ndim:
weight = weight[..., None]
loss *= weight.float()
if reduction == 'none':
return loss
elif reduction == 'sum':
return loss.sum()
elif reduction == 'mean':
return loss.mean()
elif reduction == 'valid_mean':
return loss.sum() / weight.float().sum()
class MSELoss(WeightedLoss):
@property
def func(self):
return F.mse_loss
class L1Loss(WeightedLoss):
@property
def func(self):
return F.l1_loss
class PSNR(nn.Module):
def __init__(self):
super().__init__()
def forward(self, inputs, targets, valid_mask=None, reduction='mean'):
assert reduction in ['mean', 'none']
value = (inputs - targets)**2
if valid_mask is not None:
value = value[valid_mask]
if reduction == 'mean':
return -10 * torch.log10(torch.mean(value))
elif reduction == 'none':
return -10 * torch.log10(torch.mean(value, dim=tuple(range(value.ndim)[1:])))
class SSIM():
def __init__(self, data_range=(0, 1), kernel_size=(11, 11), sigma=(1.5, 1.5), k1=0.01, k2=0.03, gaussian=True):
self.kernel_size = kernel_size
self.sigma = sigma
self.gaussian = gaussian
if any(x % 2 == 0 or x <= 0 for x in self.kernel_size):
raise ValueError(f"Expected kernel_size to have odd positive number. Got {kernel_size}.")
if any(y <= 0 for y in self.sigma):
raise ValueError(f"Expected sigma to have positive number. Got {sigma}.")
data_scale = data_range[1] - data_range[0]
self.c1 = (k1 * data_scale)**2
self.c2 = (k2 * data_scale)**2
self.pad_h = (self.kernel_size[0] - 1) // 2
self.pad_w = (self.kernel_size[1] - 1) // 2
self._kernel = self._gaussian_or_uniform_kernel(kernel_size=self.kernel_size, sigma=self.sigma)
def _uniform(self, kernel_size):
max, min = 2.5, -2.5
ksize_half = (kernel_size - 1) * 0.5
kernel = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
for i, j in enumerate(kernel):
if min <= j <= max:
kernel[i] = 1 / (max - min)
else:
kernel[i] = 0
return kernel.unsqueeze(dim=0) # (1, kernel_size)
def _gaussian(self, kernel_size, sigma):
ksize_half = (kernel_size - 1) * 0.5
kernel = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)
gauss = torch.exp(-0.5 * (kernel / sigma).pow(2))
return (gauss / gauss.sum()).unsqueeze(dim=0) # (1, kernel_size)
def _gaussian_or_uniform_kernel(self, kernel_size, sigma):
if self.gaussian:
kernel_x = self._gaussian(kernel_size[0], sigma[0])
kernel_y = self._gaussian(kernel_size[1], sigma[1])
else:
kernel_x = self._uniform(kernel_size[0])
kernel_y = self._uniform(kernel_size[1])
return torch.matmul(kernel_x.t(), kernel_y) # (kernel_size, 1) * (1, kernel_size)
def __call__(self, output, target, reduction='mean'):
if output.dtype != target.dtype:
raise TypeError(
f"Expected output and target to have the same data type. Got output: {output.dtype} and y: {target.dtype}."
)
if output.shape != target.shape:
raise ValueError(
f"Expected output and target to have the same shape. Got output: {output.shape} and y: {target.shape}."
)
if len(output.shape) != 4 or len(target.shape) != 4:
raise ValueError(
f"Expected output and target to have BxCxHxW shape. Got output: {output.shape} and y: {target.shape}."
)
assert reduction in ['mean', 'sum', 'none']
channel = output.size(1)
if len(self._kernel.shape) < 4:
self._kernel = self._kernel.expand(channel, 1, -1, -1)
output = F.pad(output, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect")
target = F.pad(target, [self.pad_w, self.pad_w, self.pad_h, self.pad_h], mode="reflect")
input_list = torch.cat([output, target, output * output, target * target, output * target])
outputs = F.conv2d(input_list, self._kernel, groups=channel)
output_list = [outputs[x * output.size(0) : (x + 1) * output.size(0)] for x in range(len(outputs))]
mu_pred_sq = output_list[0].pow(2)
mu_target_sq = output_list[1].pow(2)
mu_pred_target = output_list[0] * output_list[1]
sigma_pred_sq = output_list[2] - mu_pred_sq
sigma_target_sq = output_list[3] - mu_target_sq
sigma_pred_target = output_list[4] - mu_pred_target
a1 = 2 * mu_pred_target + self.c1
a2 = 2 * sigma_pred_target + self.c2
b1 = mu_pred_sq + mu_target_sq + self.c1
b2 = sigma_pred_sq + sigma_target_sq + self.c2
ssim_idx = (a1 * a2) / (b1 * b2)
_ssim = torch.mean(ssim_idx, (1, 2, 3))
if reduction == 'none':
return _ssim
elif reduction == 'sum':
return _ssim.sum()
elif reduction == 'mean':
return _ssim.mean()
def binary_cross_entropy(input, target, reduction='mean'):
"""
F.binary_cross_entropy is not numerically stable in mixed-precision training.
"""
loss = -(target * torch.log(input) + (1 - target) * torch.log(1 - input))
if reduction == 'mean':
return loss.mean()
elif reduction == 'none':
return loss