Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
4 |
+
import torch
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
def load_orca_dataset():
|
8 |
+
st.info("Loading dataset... This may take a while.")
|
9 |
+
return load_dataset("microsoft/orca-agentinstruct-1M-v1")
|
10 |
+
|
11 |
+
@st.cache_data
|
12 |
+
def load_model_and_tokenizer(model_name):
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
15 |
+
return tokenizer, model
|
16 |
+
|
17 |
+
def evaluate_model(ds, tokenizer, model, max_samples, text_field):
|
18 |
+
st.info("Evaluating the model...")
|
19 |
+
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
20 |
+
|
21 |
+
results = []
|
22 |
+
for i, example in enumerate(ds):
|
23 |
+
if i >= max_samples:
|
24 |
+
break
|
25 |
+
input_text = example[text_field]
|
26 |
+
result = classifier(input_text)[0]
|
27 |
+
results.append({"input": input_text, "label": result["label"], "score": result["score"]})
|
28 |
+
return results
|
29 |
+
|
30 |
+
def main():
|
31 |
+
st.title("Orca Dataset Browser and Model Evaluator")
|
32 |
+
|
33 |
+
st.sidebar.header("Configuration")
|
34 |
+
load_dataset_btn = st.sidebar.button("Load Dataset")
|
35 |
+
|
36 |
+
if load_dataset_btn:
|
37 |
+
dataset = load_orca_dataset()
|
38 |
+
st.session_state["dataset"] = dataset
|
39 |
+
|
40 |
+
if "dataset" in st.session_state:
|
41 |
+
dataset = st.session_state["dataset"]
|
42 |
+
|
43 |
+
# List available splits
|
44 |
+
available_splits = list(dataset.keys())
|
45 |
+
st.sidebar.subheader("Available Dataset Splits")
|
46 |
+
selected_split = st.sidebar.selectbox("Select Split", available_splits)
|
47 |
+
|
48 |
+
st.subheader("Dataset Explorer")
|
49 |
+
st.write(f"Displaying information for split: `{selected_split}`")
|
50 |
+
st.write(dataset[selected_split].info)
|
51 |
+
|
52 |
+
# Determine available fields
|
53 |
+
sample_entry = dataset[selected_split][0]
|
54 |
+
st.sidebar.subheader("Available Fields in Dataset")
|
55 |
+
available_fields = list(sample_entry.keys())
|
56 |
+
st.sidebar.write(available_fields)
|
57 |
+
text_field = st.sidebar.selectbox("Select Text Field", available_fields)
|
58 |
+
|
59 |
+
sample_size = st.slider("Number of Samples to Display", min_value=1, max_value=20, value=5)
|
60 |
+
st.write(dataset[selected_split].shuffle(seed=42).select(range(sample_size)))
|
61 |
+
|
62 |
+
st.subheader("Model Evaluator")
|
63 |
+
model_name = st.text_input("Enter Hugging Face Model Name", value="distilbert-base-uncased-finetuned-sst-2-english")
|
64 |
+
max_samples = st.number_input("Number of Samples to Evaluate", min_value=1, max_value=100, value=10)
|
65 |
+
|
66 |
+
if st.button("Load Model and Evaluate"):
|
67 |
+
tokenizer, model = load_model_and_tokenizer(model_name)
|
68 |
+
|
69 |
+
results = evaluate_model(dataset[selected_split].shuffle(seed=42).select(range(max_samples)), tokenizer, model, max_samples, text_field)
|
70 |
+
|
71 |
+
st.subheader("Evaluation Results")
|
72 |
+
st.write(results)
|
73 |
+
|
74 |
+
st.download_button(
|
75 |
+
label="Download Results as CSV",
|
76 |
+
data=pd.DataFrame(results).to_csv(index=False),
|
77 |
+
file_name="evaluation_results.csv",
|
78 |
+
mime="text/csv",
|
79 |
+
)
|
80 |
+
|
81 |
+
if __name__ == "__main__":
|
82 |
+
main()
|