File size: 16,729 Bytes
e293bcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# app.py
import gradio as gr
import pandas as pd
import requests
import io
import dask.dataframe as dd
from datasets import load_dataset, Image
from mlcroissant import Dataset as CroissantDataset
from huggingface_hub import get_token
import polars as pl
import warnings
import traceback
import json
import tempfile # Added for creating temporary files
# π€« Let's ignore those pesky warnings, shall we?
warnings.filterwarnings("ignore")
# --- βοΈ Configuration & Constants ---
DATASET_CONFIG = {
"caselaw": {
"name": "common-pile/caselaw_access_project", "emoji": "βοΈ",
"methods": ["π¨ API (requests)", "π§ Dask", "π₯ Croissant"], "is_public": True,
},
"prompts": {
"name": "fka/awesome-chatgpt-prompts", "emoji": "π€",
"methods": ["πΌ Pandas", "π¨ API (requests)", "π₯ Croissant"], "is_public": True,
},
"finance": {
"name": "snorkelai/agent-finance-reasoning", "emoji": "π°",
"methods": ["πΌ Pandas", "π§ Polars", "π¨ API (requests)", "π₯ Croissant"], "is_public": False,
},
"medical": {
"name": "FreedomIntelligence/medical-o1-reasoning-SFT", "emoji": "π©Ί",
"methods": ["πΌ Pandas", "π§ Polars", "π¨ API (requests)", "π₯ Croissant"], "is_public": False,
},
"inscene": {
"name": "peteromallet/InScene-Dataset", "emoji": "πΌοΈ",
"methods": ["π€ Datasets", "πΌ Pandas", "π§ Polars", "π¨ API (requests)", "π₯ Croissant"], "is_public": False,
},
}
# --- π§ Helpers & Utility Functions ---
def get_auth_headers():
token = get_token()
return {"Authorization": f"Bearer {token}"} if token else {}
# --- β¨ FIXED: dataframe_to_outputs to use temporary files ---
def dataframe_to_outputs(df: pd.DataFrame):
"""
π Takes a DataFrame and transforms it into various formats.
Now uses temporary files for maximum Gradio compatibility.
"""
if df.empty:
return "No results found. π€·", None, None, "No results to copy."
df_str = df.astype(str)
markdown_output = df_str.to_markdown(index=False)
# Create a temporary CSV file
with tempfile.NamedTemporaryFile(mode='w+', delete=False, suffix='.csv', encoding='utf-8') as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
# Create a temporary XLSX file
with tempfile.NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp_xlsx:
df.to_excel(tmp_xlsx.name, index=False, engine='openpyxl')
xlsx_path = tmp_xlsx.name
tab_delimited_output = df.to_csv(sep='\t', index=False)
return (
markdown_output,
csv_path,
xlsx_path,
tab_delimited_output,
)
def handle_error(e: Exception, request=None, response=None):
"""
π± Oh no! An error! This function now creates a detailed debug log.
"""
error_message = f"π¨ An error occurred: {str(e)}\n"
auth_tip = "π For gated datasets, did you log in? Try `huggingface-cli login` in your terminal."
full_trace = traceback.format_exc()
print(full_trace)
if "401" in str(e) or "Gated" in str(e):
error_message += auth_tip
debug_log = f"""--- π DEBUG LOG ---\nTraceback:\n{full_trace}\n\nException Type: {type(e).__name__}\nException Details: {e}\n"""
if request:
debug_log += f"""\n--- REQUEST ---\nMethod: {request.method}\nURL: {request.url}\nHeaders: {json.dumps(dict(request.headers), indent=2)}\n"""
if response is not None:
try:
response_text = json.dumps(response.json(), indent=2)
except json.JSONDecodeError:
response_text = response.text
debug_log += f"""\n--- RESPONSE ---\nStatus Code: {response.status_code}\nHeaders: {json.dumps(dict(response.headers), indent=2)}\nContent:\n{response_text}\n"""
return (
pd.DataFrame(), gr.Gallery(None), f"### π¨ Error\nAn error occurred. See the debug log below for details.",
"", None, None, "", f"```python\n# π¨ Error during execution:\n# {e}\n```",
gr.Code(value=debug_log, visible=True)
)
def search_dataframe(df: pd.DataFrame, query: str):
if not query:
return df.head(100)
string_cols = df.select_dtypes(include=['object', 'string']).columns
if string_cols.empty:
return pd.DataFrame()
mask = pd.Series([False] * len(df))
for col in string_cols:
mask |= df[col].astype(str).str.contains(query, case=False, na=False)
return df[mask]
def generate_code_snippet(dataset_key: str, access_method: str, query: str):
"""
π» Generate Python code snippet for the current operation
"""
config = DATASET_CONFIG[dataset_key]
repo_id = config["name"]
if "API" in access_method:
return f'''# π API Access for {repo_id}
import requests
import pandas as pd
url = "https://datasets-server.huggingface.co/rows"
params = {{
"dataset": "{repo_id}",
"config": "default",
"split": "train",
"offset": 0,
"length": 100
}}
headers = {{"Authorization": "Bearer YOUR_HF_TOKEN"}} if needed else {{}}
response = requests.get(url, params=params, headers=headers)
if response.status_code == 200:
data = response.json()
rows_data = [item['row'] for item in data['rows']]
df = pd.json_normalize(rows_data)
# Search for: "{query}"
if "{query}":
string_cols = df.select_dtypes(include=['object', 'string']).columns
mask = pd.Series([False] * len(df))
for col in string_cols:
mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
df = df[mask]
print(f"Found {{len(df)}} results")
print(df.head())
else:
print(f"Error: {{response.status_code}} - {{response.text}}")
'''
elif "Pandas" in access_method:
file_path = "prompts.csv" if repo_id == "fka/awesome-chatgpt-prompts" else "train.parquet"
return f'''# πΌ Pandas Access for {repo_id}
import pandas as pd
# You may need: huggingface-cli login
df = pd.read_{"csv" if "csv" in file_path else "parquet"}("hf://datasets/{repo_id}/{file_path}")
# Search for: "{query}"
if "{query}":
string_cols = df.select_dtypes(include=['object', 'string']).columns
mask = pd.Series([False] * len(df))
for col in string_cols:
mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
df = df[mask]
print(f"Found {{len(df)}} results")
print(df.head())
'''
elif "Datasets" in access_method:
return f'''# π€ Datasets Library Access for {repo_id}
from datasets import load_dataset
import pandas as pd
# You may need: huggingface-cli login
ds = load_dataset("{repo_id}", split="train", streaming=True)
data = list(ds.take(1000))
df = pd.DataFrame(data)
# Search for: "{query}"
if "{query}":
string_cols = df.select_dtypes(include=['object', 'string']).columns
mask = pd.Series([False] * len(df))
for col in string_cols:
mask |= df[col].astype(str).str.contains("{query}", case=False, na=False)
df = df[mask]
print(f"Found {{len(df)}} results")
print(df.head())
'''
else:
return f"# Code generation for {access_method} not implemented yet"
# --- π£ Data Fetching & Processing Functions ---
def fetch_data(dataset_key: str, access_method: str, query: str):
"""
π Main mission control. Always yields a tuple of 9 values to match the UI components.
"""
outputs = [pd.DataFrame(), None, "π Ready.", "", None, None, "", "", gr.Code(visible=False)]
req, res = None, None
try:
config = DATASET_CONFIG[dataset_key]
repo_id = config["name"]
# Generate code snippet
code_snippet = generate_code_snippet(dataset_key, access_method, query)
outputs[7] = code_snippet
if "API" in access_method:
all_results_df = pd.DataFrame()
MAX_PAGES = 5
PAGE_SIZE = 100
if not query:
MAX_PAGES = 1
outputs[2] = "β³ No search term. Fetching first 100 records as a sample..."
yield tuple(outputs)
for page in range(MAX_PAGES):
if query:
outputs[2] = f"β³ Searching page {page + 1}..."
yield tuple(outputs)
offset = page * PAGE_SIZE
url = f"https://datasets-server.huggingface.co/rows?dataset={repo_id}&config=default&split=train&offset={offset}&length={PAGE_SIZE}"
headers = get_auth_headers() if not config["is_public"] else {}
res = requests.get(url, headers=headers)
req = res.request
res.raise_for_status()
data = res.json()
if not data.get('rows'):
outputs[2] = "π No more data to search."
yield tuple(outputs)
break
# --- β¨ FIXED: JSON processing logic ---
# Extract the actual data from the 'row' key of each item in the list
rows_data = [item['row'] for item in data['rows']]
page_df = pd.json_normalize(rows_data)
found_in_page = search_dataframe(page_df, query)
if not found_in_page.empty:
all_results_df = pd.concat([all_results_df, found_in_page]).reset_index(drop=True)
outputs[0] = all_results_df
outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(all_results_df)
outputs[2] = f"β
Found **{len(all_results_df)}** results so far..."
if dataset_key == 'inscene':
gallery_data = [(row['image'], row.get('text', '')) for _, row in all_results_df.iterrows() if 'image' in row and isinstance(row['image'], Image.Image)]
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
yield tuple(outputs)
outputs[2] = f"π Search complete. Found a total of **{len(all_results_df)}** results."
yield tuple(outputs)
return
outputs[2] = f"β³ Loading data via `{access_method}`..."
yield tuple(outputs)
df = pd.DataFrame()
if "Pandas" in access_method:
file_path = f"hf://datasets/{repo_id}/"
if repo_id == "fka/awesome-chatgpt-prompts":
file_path += "prompts.csv"
df = pd.read_csv(file_path)
else:
try:
df = pd.read_parquet(f"{file_path}data/train-00000-of-00001.parquet")
except:
try:
df = pd.read_parquet(f"{file_path}train.parquet")
except:
df = pd.read_json(f"{file_path}medical_o1_sft.json")
elif "Datasets" in access_method:
ds = load_dataset(repo_id, split='train', streaming=True).take(1000)
df = pd.DataFrame(ds)
elif "Polars" in access_method:
outputs[2] = "β³ Loading with Polars..."
yield tuple(outputs)
if repo_id == "fka/awesome-chatgpt-prompts":
pl_df = pl.read_csv(f"hf://datasets/{repo_id}/prompts.csv")
else:
pl_df = pl.read_parquet(f"hf://datasets/{repo_id}/train.parquet")
df = pl_df.to_pandas()
elif "Dask" in access_method:
outputs[2] = "β³ Loading with Dask..."
yield tuple(outputs)
dask_df = dd.read_json(f"hf://datasets/{repo_id}/**/*.jsonl.gz")
df = dask_df.head(1000) # Convert to pandas for processing
elif "Croissant" in access_method:
outputs[2] = "β³ Loading with Croissant..."
yield tuple(outputs)
headers = get_auth_headers() if not config["is_public"] else {}
croissant_url = f"https://huggingface.co/api/datasets/{repo_id}/croissant"
response = requests.get(croissant_url, headers=headers)
response.raise_for_status()
jsonld = response.json()
ds = CroissantDataset(jsonld=jsonld)
records = list(ds.records("default"))[:1000] # Take first 1000
df = pd.DataFrame(records)
outputs[2] = "π Searching loaded data..."
yield tuple(outputs)
final_df = search_dataframe(df, query)
outputs[0] = final_df
outputs[3], outputs[4], outputs[5], outputs[6] = dataframe_to_outputs(final_df)
outputs[2] = f"π Search complete. Found **{len(final_df)}** results."
if dataset_key == 'inscene' and not final_df.empty:
gallery_data = [(row['image'], row.get('text', '')) for _, row in final_df.iterrows() if 'image' in row and isinstance(row.get('image'), Image.Image)]
outputs[1] = gr.Gallery(gallery_data, label="πΌοΈ Image Results", height=400)
yield tuple(outputs)
except Exception as e:
yield handle_error(e, req, res)
# --- πΌοΈ UI Generation ---
def create_dataset_tab(dataset_key: str):
config = DATASET_CONFIG[dataset_key]
with gr.Tab(f"{config['emoji']} {dataset_key.capitalize()}"):
gr.Markdown(f"## {config['emoji']} Query the `{config['name']}` Dataset")
if not config['is_public']:
gr.Markdown("**Note:** This is a gated dataset. Please log in via `huggingface-cli login` in your terminal first.")
with gr.Row():
access_method = gr.Radio(config['methods'], label="π Access Method", value=config['methods'][0])
query = gr.Textbox(label="π Search Query", placeholder="Enter any text to search, or leave blank for samples...")
fetch_button = gr.Button("π Go Fetch!")
status_output = gr.Markdown("π Ready to search.")
df_output = gr.DataFrame(label="π Results DataFrame", interactive=False, wrap=True)
gallery_output = gr.Gallery(visible=(dataset_key == 'inscene'), label="πΌοΈ Image Results")
with gr.Accordion("π View/Export Full Results", open=False):
markdown_output = gr.Markdown(label="π Markdown View")
with gr.Row():
csv_output = gr.File(label="β¬οΈ Download CSV")
xlsx_output = gr.File(label="β¬οΈ Download XLSX")
copy_output = gr.Code(label="π Copy-Paste (Tab-Delimited)")
code_output = gr.Code(label="π» Python Code Snippet", language="python")
debug_log_output = gr.Code(label="π Debug Log", visible=False)
fetch_button.click(
fn=fetch_data,
inputs=[gr.State(dataset_key), access_method, query],
outputs=[
df_output, gallery_output, status_output, markdown_output,
csv_output, xlsx_output, copy_output, code_output,
debug_log_output
]
)
# --- π Main App ---
with gr.Blocks(theme=gr.themes.Soft(), title="Hugging Face Dataset Explorer") as demo:
gr.Markdown("# π€ Hugging Face Dataset Explorer")
gr.Markdown(
"Select a dataset, choose an access method, and type a query. "
"If an error occurs, a detailed debug log will appear to help troubleshoot the issue."
)
with gr.Accordion("π§ Quick Start Guide", open=False):
gr.Markdown("""
### π Quick Start:
1. **π€ Prompts Tab**: Try API method, search for "translator" or "linux"
2. **βοΈ Caselaw Tab**: Try API method, search for "contract" or "court"
3. **π° Finance Tab**: Requires login, try API method first
4. **π©Ί Medical Tab**: Requires login, try API method first
5. **πΌοΈ InScene Tab**: Requires login, try Datasets method for images
### π Authentication:
For gated datasets, run in terminal: `huggingface-cli login`
### π οΈ Methods:
- **π¨ API**: Fast, reliable, works without login (100 rows max)
- **πΌ Pandas**: Full dataset access, requires login for gated datasets
- **π€ Datasets**: Good for streaming large datasets
- **π§ Polars/Dask**: Alternative fast data processing
- **π₯ Croissant**: Metadata-aware loading
""")
with gr.Tabs():
for key in DATASET_CONFIG.keys():
create_dataset_tab(key)
if __name__ == "__main__":
demo.launch(debug=True) |