Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,23 +2,22 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import PIL
|
5 |
-
|
6 |
-
from flamingo_mini import FlamingoConfig, FlamingoModel, FlamingoProcessor
|
7 |
-
|
8 |
-
|
9 |
|
10 |
EXAMPLES_DIR = 'examples'
|
11 |
DEFAULT_PROMPT = "<image>"
|
12 |
|
13 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
|
15 |
-
model =
|
|
|
16 |
model.to(device)
|
17 |
model.eval()
|
18 |
|
19 |
-
processor
|
|
|
20 |
|
21 |
-
#
|
22 |
examples = []
|
23 |
if os.path.isdir(EXAMPLES_DIR):
|
24 |
for file in os.listdir(EXAMPLES_DIR):
|
@@ -29,10 +28,10 @@ if os.path.isdir(EXAMPLES_DIR):
|
|
29 |
def predict_caption(image, prompt):
|
30 |
assert isinstance(prompt, str)
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
images=image,
|
35 |
-
|
36 |
)
|
37 |
|
38 |
if isinstance(caption, list):
|
@@ -41,9 +40,11 @@ def predict_caption(image, prompt):
|
|
41 |
return caption
|
42 |
|
43 |
|
44 |
-
iface = gr.Interface(
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
48 |
|
49 |
iface.launch(debug=True)
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import PIL
|
5 |
+
from transformers import AutoProcessor, AutoModelForCausalLM # Using AutoModel classes
|
|
|
|
|
|
|
6 |
|
7 |
EXAMPLES_DIR = 'examples'
|
8 |
DEFAULT_PROMPT = "<image>"
|
9 |
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
|
12 |
+
# Load model using AutoModel with trust_remote_code=True
|
13 |
+
model = AutoModelForCausalLM.from_pretrained('dhansmair/flamingo-mini', trust_remote_code=True)
|
14 |
model.to(device)
|
15 |
model.eval()
|
16 |
|
17 |
+
# Initialize processor without the `device` argument
|
18 |
+
processor = AutoProcessor.from_pretrained('dhansmair/flamingo-mini')
|
19 |
|
20 |
+
# Setup some example images
|
21 |
examples = []
|
22 |
if os.path.isdir(EXAMPLES_DIR):
|
23 |
for file in os.listdir(EXAMPLES_DIR):
|
|
|
28 |
def predict_caption(image, prompt):
|
29 |
assert isinstance(prompt, str)
|
30 |
|
31 |
+
# Process the image using the model
|
32 |
+
caption = model.generate(
|
33 |
+
processor(images=image, prompt=prompt), # Pass processed inputs to the model
|
34 |
+
max_length=50
|
35 |
)
|
36 |
|
37 |
if isinstance(caption, list):
|
|
|
40 |
return caption
|
41 |
|
42 |
|
43 |
+
iface = gr.Interface(
|
44 |
+
fn=predict_caption,
|
45 |
+
inputs=[gr.Image(type="pil"), gr.Textbox(value=DEFAULT_PROMPT, label="Prompt")],
|
46 |
+
examples=examples,
|
47 |
+
outputs="text"
|
48 |
+
)
|
49 |
|
50 |
iface.launch(debug=True)
|