|
import gradio as gr |
|
import os |
|
import json |
|
import requests |
|
|
|
|
|
|
|
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration |
|
import torch |
|
from datasets import load_dataset |
|
|
|
import os |
|
import csv |
|
from gradio import inputs, outputs |
|
import huggingface_hub |
|
from huggingface_hub import Repository, hf_hub_download, upload_file |
|
from datetime import datetime |
|
import fastapi |
|
from typing import List, Dict |
|
import httpx |
|
import pandas as pd |
|
import datasets as ds |
|
|
|
|
|
title = """<h1 align="center">💬ChatGPT ChatBack🧠💾</h1>""" |
|
|
|
UseMemory=True |
|
HF_TOKEN=os.environ.get("HF_TOKEN") |
|
|
|
|
|
API_URL = "https://api.openai.com/v1/chat/completions" |
|
OPENAI_API_KEY= os.environ["HF_TOKEN"] |
|
|
|
description = """ |
|
|
|
Chatbot With persistent memory dataset allowing multiagent system AI to access a shared dataset as memory pool with stored interactions. |
|
|
|
|
|
## ChatGPT Datasets 📚 |
|
- WebText |
|
- Common Crawl |
|
- BooksCorpus |
|
- English Wikipedia |
|
- Toronto Books Corpus |
|
- OpenWebText |
|
|
|
## ChatGPT Datasets - Details 📚 |
|
- **WebText:** A dataset of web pages crawled from domains on the Alexa top 5,000 list. This dataset was used to pretrain GPT-2. |
|
- [WebText: A Large-Scale Unsupervised Text Corpus by Radford et al.](https://paperswithcode.com/dataset/webtext) |
|
- **Common Crawl:** A dataset of web pages from a variety of domains, which is updated regularly. This dataset was used to pretrain GPT-3. |
|
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/common-crawl) by Brown et al. |
|
- **BooksCorpus:** A dataset of over 11,000 books from a variety of genres. |
|
- [Scalable Methods for 8 Billion Token Language Modeling](https://paperswithcode.com/dataset/bookcorpus) by Zhu et al. |
|
- **English Wikipedia:** A dump of the English-language Wikipedia as of 2018, with articles from 2001-2017. |
|
- [Improving Language Understanding by Generative Pre-Training](https://huggingface.co/spaces/awacke1/WikipediaUltimateAISearch?logs=build) Space for Wikipedia Search |
|
- **Toronto Books Corpus:** A dataset of over 7,000 books from a variety of genres, collected by the University of Toronto. |
|
- [Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond](https://paperswithcode.com/dataset/bookcorpus) by Schwenk and Douze. |
|
- **OpenWebText:** A dataset of web pages that were filtered to remove content that was likely to be low-quality or spammy. This dataset was used to pretrain GPT-3. |
|
- [Language Models are Few-Shot Learners](https://paperswithcode.com/dataset/openwebtext) by Brown et al. |
|
""" |
|
|
|
|
|
def predict(inputs, top_p, temperature, chat_counter, chatbot=[], history=[]): |
|
|
|
|
|
payload = { |
|
"model": "gpt-3.5-turbo", |
|
"messages": [{"role": "user", "content": f"{inputs}"}], |
|
"temperature" : 1.0, |
|
"top_p":1.0, |
|
"n" : 1, |
|
"stream": True, |
|
"presence_penalty":0, |
|
"frequency_penalty":0, |
|
} |
|
|
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {OPENAI_API_KEY}" |
|
} |
|
|
|
|
|
print(f"chat_counter - {chat_counter}") |
|
if chat_counter != 0 : |
|
messages=[] |
|
for data in chatbot: |
|
temp1 = {} |
|
temp1["role"] = "user" |
|
temp1["content"] = data[0] |
|
temp2 = {} |
|
temp2["role"] = "assistant" |
|
temp2["content"] = data[1] |
|
messages.append(temp1) |
|
messages.append(temp2) |
|
temp3 = {} |
|
temp3["role"] = "user" |
|
temp3["content"] = inputs |
|
messages.append(temp3) |
|
|
|
payload = { |
|
"model": "gpt-3.5-turbo", |
|
"messages": messages, |
|
"temperature" : temperature, |
|
"top_p": top_p, |
|
"n" : 1, |
|
"stream": True, |
|
"presence_penalty":0, |
|
"frequency_penalty":0, |
|
} |
|
chat_counter+=1 |
|
|
|
|
|
history.append(inputs) |
|
print(f"payload is - {payload}") |
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, stream=True) |
|
|
|
token_counter = 0 |
|
partial_words = "" |
|
|
|
|
|
|
|
counter=0 |
|
for chunk in response.iter_lines(): |
|
|
|
if counter == 0: |
|
counter+=1 |
|
continue |
|
|
|
|
|
if chunk.decode() : |
|
chunk = chunk.decode() |
|
|
|
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']: |
|
|
|
|
|
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"] |
|
if token_counter == 0: |
|
history.append(" " + partial_words) |
|
else: |
|
history[-1] = partial_words |
|
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] |
|
token_counter+=1 |
|
yield chat, history, chat_counter |
|
|
|
def take_last_tokens(inputs, note_history, history): |
|
if inputs['input_ids'].shape[1] > 128: |
|
inputs['input_ids'] = torch.tensor([inputs['input_ids'][0][-128:].tolist()]) |
|
inputs['attention_mask'] = torch.tensor([inputs['attention_mask'][0][-128:].tolist()]) |
|
note_history = ['</s> <s>'.join(note_history[0].split('</s> <s>')[2:])] |
|
history = history[1:] |
|
return inputs, note_history, history |
|
|
|
def add_note_to_history(note, note_history): |
|
note_history.append(note) |
|
note_history = '</s> <s>'.join(note_history) |
|
return [note_history] |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value='') |
|
|
|
|
|
def SaveResult(text, outputfileName): |
|
basedir = os.path.dirname(__file__) |
|
savePath = outputfileName |
|
print("Saving: " + text + " to " + savePath) |
|
from os.path import exists |
|
file_exists = exists(savePath) |
|
if file_exists: |
|
with open(outputfileName, "a") as f: |
|
f.write(str(text.replace("\n"," "))) |
|
f.write('\n') |
|
else: |
|
with open(outputfileName, "w") as f: |
|
f.write(str("time, message, text\n")) |
|
f.write(str(text.replace("\n"," "))) |
|
f.write('\n') |
|
return |
|
|
|
|
|
def store_message(name: str, message: str, outputfileName: str): |
|
basedir = os.path.dirname(__file__) |
|
savePath = outputfileName |
|
|
|
|
|
from os.path import exists |
|
file_exists = exists(savePath) |
|
|
|
if (file_exists==False): |
|
with open(savePath, "w") as f: |
|
f.write(str("time, message, text\n")) |
|
if name and message: |
|
writer = csv.DictWriter(f, fieldnames=["time", "message", "name"]) |
|
writer.writerow( |
|
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() } |
|
) |
|
df = pd.read_csv(savePath) |
|
df = df.sort_values(df.columns[0],ascending=False) |
|
else: |
|
if name and message: |
|
with open(savePath, "a") as csvfile: |
|
writer = csv.DictWriter(csvfile, fieldnames=[ "time", "message", "name", ]) |
|
writer.writerow( |
|
{"time": str(datetime.now()), "message": message.strip(), "name": name.strip() } |
|
) |
|
df = pd.read_csv(savePath) |
|
df = df.sort_values(df.columns[0],ascending=False) |
|
return df |
|
|
|
|
|
def get_base(filename): |
|
basedir = os.path.dirname(__file__) |
|
print(basedir) |
|
loadPath = basedir + filename |
|
print(loadPath) |
|
return loadPath |
|
|
|
|
|
def chat(message, history): |
|
history = history or [] |
|
if history: |
|
history_useful = ['</s> <s>'.join([str(a[0])+'</s> <s>'+str(a[1]) for a in history])] |
|
else: |
|
history_useful = [] |
|
history_useful = add_note_to_history(message, history_useful) |
|
inputs = tokenizer(history_useful, return_tensors="pt") |
|
inputs, history_useful, history = take_last_tokens(inputs, history_useful, history) |
|
reply_ids = model.generate(**inputs) |
|
response = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0] |
|
history_useful = add_note_to_history(response, history_useful) |
|
list_history = history_useful[0].split('</s> <s>') |
|
history.append((list_history[-2], list_history[-1])) |
|
df=pd.DataFrame() |
|
if UseMemory: |
|
outputfileName = 'ChatbotMemory3.csv' |
|
df = store_message(message, response, outputfileName) |
|
basedir = get_base(outputfileName) |
|
return history, df, basedir |
|
|
|
|
|
|
|
with gr.Blocks(css = """#col_container {width: 1000px; margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""") as demo: |
|
|
|
gr.HTML(title) |
|
|
|
|
|
gr.Markdown("<h1><center>🍰Gradio chatbot backed by dataframe CSV memory🎨</center></h1>") |
|
with gr.Row(): |
|
t1 = gr.Textbox(lines=1, default="", label="Chat Text:") |
|
b1 = gr.Button("🍰 Respond and Retrieve Messages") |
|
with gr.Row(): |
|
s1 = gr.State([]) |
|
df1 = gr.Dataframe(wrap=True, max_rows=1000, overflow_row_behaviour= "paginate") |
|
with gr.Row(): |
|
file = gr.File(label="File") |
|
s2 = gr.Markdown() |
|
b1.click(fn=chat, inputs=[t1, s1], outputs=[s1, df1, file]) |
|
|
|
|
|
with gr.Column(elem_id = "col_container"): |
|
chatbot = gr.Chatbot(elem_id='chatbot') |
|
inputs = gr.Textbox(placeholder= "There is only one real true reward in life and this is existence or nonexistence. Everything else is a corollary.", label= "Type an input and press Enter") |
|
state = gr.State([]) |
|
gpt = gr.Button() |
|
|
|
with gr.Accordion("Parameters", open=False): |
|
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",) |
|
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",) |
|
chat_counter = gr.Number(value=0, visible=False, precision=0) |
|
|
|
inputs.submit( predict, [inputs, top_p, temperature,chat_counter, chatbot, state], [chatbot, state, chat_counter],) |
|
|
|
gpt.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter],) |
|
gpt.click(reset_textbox, [], [inputs]) |
|
inputs.submit(reset_textbox, [], [inputs]) |
|
|
|
|
|
gr.Markdown(description) |
|
|
|
|
|
demo.queue().launch(debug=True) |
|
|