File size: 6,184 Bytes
4849edf
2b4eb7c
 
 
 
 
4849edf
2b4eb7c
 
 
 
 
 
 
 
a3dfcb0
 
 
2b4eb7c
4849edf
2b4eb7c
a3dfcb0
 
 
2b4eb7c
4849edf
 
072f36e
2b4eb7c
4849edf
 
 
a3dfcb0
2b4eb7c
 
 
 
4849edf
 
 
2b4eb7c
 
 
 
4849edf
 
2b4eb7c
 
4849edf
2b4eb7c
a3dfcb0
 
 
2b4eb7c
a3dfcb0
 
 
 
2b4eb7c
a3dfcb0
 
 
 
2b4eb7c
4849edf
 
 
a3dfcb0
4849edf
 
 
a3dfcb0
4849edf
 
a3dfcb0
4849edf
a3dfcb0
 
 
 
4849edf
 
 
 
a3dfcb0
 
 
 
 
4849edf
 
 
 
 
 
 
 
 
 
 
 
e27e64b
a3dfcb0
4849edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3dfcb0
4849edf
 
 
 
 
a3dfcb0
4849edf
a3dfcb0
4849edf
 
 
 
2b4eb7c
4849edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3dfcb0
 
 
e27e64b
a3dfcb0
 
2b4eb7c
4849edf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# 🚀 Import all necessary libraries
import os
import argparse
from functools import partial
from pathlib import Path
import sys
import random
from omegaconf import OmegaConf
from PIL import Image
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm import trange
from transformers import CLIPProcessor, CLIPModel
from vqvae import VQVAE2  # Autoencoder replacement
from diffusion_models import Diffusion  # Swapped Diffusion model for DALL·E 2 based model
from huggingface_hub import hf_hub_url, cached_download
import gradio as gr  # 🎨 The magic canvas for AI-powered image generation!

# 🖼️ Download the necessary model files from HuggingFace
vqvae_model_path = cached_download(hf_hub_url("huggingface/vqvae-2", filename="vqvae_model.ckpt"))
diffusion_model_path = cached_download(hf_hub_url("huggingface/dalle-2", filename="diffusion_model.ckpt"))

# 📐 Utility Functions: Math and images, what could go wrong?
# These functions help parse prompts and resize/crop images to fit nicely

def parse_prompt(prompt, default_weight=3.):
    """
    🎯 Parses a prompt into text and weight.
    """
    vals = prompt.rsplit(':', 1)
    vals = vals + ['', default_weight][len(vals):]
    return vals[0], float(vals[1])

def resize_and_center_crop(image, size):
    """
    ✂️ Resize and crop image to center it beautifully.
    """
    fac = max(size[0] / image.size[0], size[1] / image.size[1])
    image = image.resize((int(fac * image.size[0]), int(fac * image.size[1])), Image.LANCZOS)
    return TF.center_crop(image, size[::-1])

# 🧠 Model loading: the brain of our operation! 🔥

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print('loading models... 🛠️')

# Load CLIP model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# Load VQ-VAE-2 Autoencoder
vqvae = VQVAE2()
vqvae.load_state_dict(torch.load(vqvae_model_path))
vqvae.eval().requires_grad_(False).to(device)

# Load Diffusion Model
diffusion_model = Diffusion()
diffusion_model.load_state_dict(torch.load(diffusion_model_path))
diffusion_model = diffusion_model.to(device).eval().requires_grad_(False)

# 🎨 The key function: Where the magic happens!
# This is where we generate images based on text and image prompts

def generate(n=1, prompts=['a red circle'], images=[], seed=42, steps=15, method='ddim', eta=None):
    """
    🖼️ Generates a list of PIL images based on given text and image prompts.
    """
    zero_embed = torch.zeros([1, clip_model.config.projection_dim], device=device)
    target_embeds, weights = [zero_embed], []

    # Parse text prompts and encode with CLIP
    for prompt in prompts:
        inputs = clip_processor(text=prompt, return_tensors="pt").to(device)
        text_embed = clip_model.get_text_features(**inputs).float()
        target_embeds.append(text_embed)
        weights.append(1.0)

    # Parse image prompts
    for prompt in images:
        path, weight = parse_prompt(prompt)
        img = Image.open(path).convert('RGB')
        img = resize_and_center_crop(img, (224, 224))
        inputs = clip_processor(images=img, return_tensors="pt").to(device)
        image_embed = clip_model.get_image_features(**inputs).float()
        target_embeds.append(image_embed)
        weights.append(weight)

    # Adjust weights and set seed
    weights = torch.tensor([1 - sum(weights), *weights], device=device)
    torch.manual_seed(seed)

    # 💡 Model function with classifier-free guidance
    def cfg_model_fn(x, t):
        n = x.shape[0]
        n_conds = len(target_embeds)
        x_in = x.repeat([n_conds, 1, 1, 1])
        t_in = t.repeat([n_conds])
        embed_in = torch.cat([*target_embeds]).repeat_interleave(n, 0)
        vs = diffusion_model(x_in, t_in, embed_in).view([n_conds, n, *x.shape[1:]])
        v = vs.mul(weights[:, None, None, None, None]).sum(0)
        return v

    # 🎞️ Run the sampler to generate images
    def run(x, steps):
        if method == 'ddpm':
            return sampling.sample(cfg_model_fn, x, steps, 1., {})
        if method == 'ddim':
            return sampling.sample(cfg_model_fn, x, steps, eta, {})
        if method == 'plms':
            return sampling.plms_sample(cfg_model_fn, x, steps, {})
        assert False

    # 🏃‍♂️ Generate the output images
    batch_size = n
    x = torch.randn([n, 3, 64, 64], device=device)
    t = torch.linspace(1, 0, steps + 1, device=device)[:-1]
    pil_ims = []
    for i in trange(0, n, batch_size):
        cur_batch_size = min(n - i, batch_size)
        out_latents = run(x[i:i + cur_batch_size], steps)
        outs = vqvae.decode(out_latents)
        for j, out in enumerate(outs):
            pil_ims.append(transforms.ToPILImage()(out))

    return pil_ims

# 🖌️ Interface: Gradio's brush to paint the UI
def gen_ims(prompt, im_prompt=None, seed=None, n_steps=10, method='plms'):
    """
    💡 Gradio function to wrap image generation.
    """
    if seed is None:
        seed = random.randint(0, 10000)
    prompts = [prompt]
    im_prompts = []
    if im_prompt is not None:
        im_prompts = [im_prompt]
    pil_ims = generate(n=1, prompts=prompts, images=im_prompts, seed=seed, steps=n_steps, method=method)
    return pil_ims[0]

# 🖼️ Gradio UI: The interface where users can input text or image prompts
iface = gr.Interface(
    fn=gen_ims,
    inputs=[
        gr.Textbox(label="Text prompt"),
        gr.Image(optional=True, label="Image prompt", type='filepath')
    ],
    outputs=gr.Image(type="pil", label="Generated Image"),
    examples=[
        ["A beautiful sunset over the ocean"],
        ["A futuristic cityscape at night"],
        ["A surreal dream-like landscape"]
    ],
    title='CLIP + Diffusion Model Image Generator',
    description="Generate stunning images from text and image prompts using CLIP and a diffusion model.",
)

# 🚀 Launch the Gradio interface
iface.launch(enable_queue=True)