Spaces:
Runtime error
Runtime error
Merge pull request #10 from huggingface/add-caching
Browse files- .github/workflows/quality.yml +29 -0
- Makefile +8 -0
- app.py +90 -61
- evaluation.py +46 -0
- pyproject.toml +2 -0
- utils.py +13 -4
.github/workflows/quality.yml
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Code quality
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
pull_request:
|
| 8 |
+
branches:
|
| 9 |
+
- main
|
| 10 |
+
|
| 11 |
+
jobs:
|
| 12 |
+
|
| 13 |
+
check_code_quality:
|
| 14 |
+
name: Check code quality
|
| 15 |
+
runs-on: ubuntu-latest
|
| 16 |
+
steps:
|
| 17 |
+
- name: Checkout code
|
| 18 |
+
uses: actions/checkout@v2
|
| 19 |
+
- name: Setup Python environment
|
| 20 |
+
uses: actions/setup-python@v2
|
| 21 |
+
with:
|
| 22 |
+
python-version: 3.9
|
| 23 |
+
- name: Install dependencies
|
| 24 |
+
run: |
|
| 25 |
+
python -m pip install --upgrade pip
|
| 26 |
+
python -m pip install black isort flake8
|
| 27 |
+
- name: Code quality
|
| 28 |
+
run: |
|
| 29 |
+
make quality
|
Makefile
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
style:
|
| 2 |
+
python -m black --line-length 119 --target-version py39 .
|
| 3 |
+
python -m isort .
|
| 4 |
+
|
| 5 |
+
quality:
|
| 6 |
+
python -m black --check --line-length 119 --target-version py39 .
|
| 7 |
+
python -m isort --check-only .
|
| 8 |
+
python -m flake8 --max-line-length 119
|
app.py
CHANGED
|
@@ -8,8 +8,8 @@ from datasets import get_dataset_config_names
|
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
from huggingface_hub import list_datasets
|
| 10 |
|
| 11 |
-
from
|
| 12 |
-
|
| 13 |
|
| 14 |
if Path(".env").is_file():
|
| 15 |
load_dotenv(".env")
|
|
@@ -33,9 +33,9 @@ TASK_TO_ID = {
|
|
| 33 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
| 34 |
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
st.title("Evaluation as a Service")
|
| 40 |
st.markdown(
|
| 41 |
"""
|
|
@@ -64,18 +64,22 @@ if metadata is None:
|
|
| 64 |
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
| 65 |
|
| 66 |
with st.expander("Advanced configuration"):
|
| 67 |
-
|
| 68 |
selected_task = st.selectbox(
|
| 69 |
"Select a task",
|
| 70 |
SUPPORTED_TASKS,
|
| 71 |
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
| 72 |
)
|
| 73 |
-
|
| 74 |
configs = get_dataset_config_names(selected_dataset)
|
| 75 |
selected_config = st.selectbox("Select a config", configs)
|
| 76 |
|
| 77 |
-
|
| 78 |
-
splits_resp = http_get(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
if splits_resp.status_code == 200:
|
| 80 |
split_names = []
|
| 81 |
all_splits = splits_resp.json()
|
|
@@ -89,11 +93,15 @@ with st.expander("Advanced configuration"):
|
|
| 89 |
index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0,
|
| 90 |
)
|
| 91 |
|
| 92 |
-
|
| 93 |
rows_resp = http_get(
|
| 94 |
path="/rows",
|
| 95 |
domain=DATASETS_PREVIEW_API,
|
| 96 |
-
params={
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
).json()
|
| 98 |
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
| 99 |
|
|
@@ -135,7 +143,7 @@ with st.expander("Advanced configuration"):
|
|
| 135 |
st.markdown("`tags` column")
|
| 136 |
with col2:
|
| 137 |
tokens_col = st.selectbox(
|
| 138 |
-
"This column should contain the
|
| 139 |
col_names,
|
| 140 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
|
| 141 |
)
|
|
@@ -244,65 +252,86 @@ with st.form(key="form"):
|
|
| 244 |
|
| 245 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
| 246 |
print("Selected models:", selected_models)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
submit_button = st.form_submit_button("Make submission")
|
| 248 |
|
| 249 |
if submit_button:
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
"username": AUTOTRAIN_USERNAME,
|
| 253 |
-
"proj_name": f"my-eval-project-{project_id}",
|
| 254 |
-
"task": TASK_TO_ID[selected_task],
|
| 255 |
-
"config": {
|
| 256 |
-
"language": "en",
|
| 257 |
-
"max_models": 5,
|
| 258 |
-
"instance": {
|
| 259 |
-
"provider": "aws",
|
| 260 |
-
"instance_type": "ml.g4dn.4xlarge",
|
| 261 |
-
"max_runtime_seconds": 172800,
|
| 262 |
-
"num_instances": 1,
|
| 263 |
-
"disk_size_gb": 150,
|
| 264 |
-
},
|
| 265 |
-
"evaluation": {
|
| 266 |
-
"metrics": [],
|
| 267 |
-
"models": selected_models,
|
| 268 |
-
},
|
| 269 |
-
},
|
| 270 |
-
}
|
| 271 |
-
print(f"Payload: {payload}")
|
| 272 |
-
project_json_resp = http_post(
|
| 273 |
-
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
| 274 |
-
).json()
|
| 275 |
-
print(project_json_resp)
|
| 276 |
-
|
| 277 |
-
if project_json_resp["created"]:
|
| 278 |
payload = {
|
| 279 |
-
"
|
| 280 |
-
"
|
| 281 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
}
|
| 283 |
-
|
| 284 |
-
|
|
|
|
| 285 |
payload=payload,
|
| 286 |
token=HF_TOKEN,
|
| 287 |
domain=AUTOTRAIN_BACKEND_API,
|
| 288 |
-
params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
|
| 289 |
).json()
|
| 290 |
-
print(
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
token=HF_TOKEN,
|
| 295 |
domain=AUTOTRAIN_BACKEND_API,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
).json()
|
| 297 |
-
print(
|
| 298 |
-
if
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from dotenv import load_dotenv
|
| 9 |
from huggingface_hub import list_datasets
|
| 10 |
|
| 11 |
+
from evaluation import filter_evaluated_models
|
| 12 |
+
from utils import get_compatible_models, get_key, get_metadata, http_get, http_post
|
| 13 |
|
| 14 |
if Path(".env").is_file():
|
| 15 |
load_dotenv(".env")
|
|
|
|
| 33 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
| 34 |
|
| 35 |
|
| 36 |
+
#######
|
| 37 |
+
# APP #
|
| 38 |
+
#######
|
| 39 |
st.title("Evaluation as a Service")
|
| 40 |
st.markdown(
|
| 41 |
"""
|
|
|
|
| 64 |
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
| 65 |
|
| 66 |
with st.expander("Advanced configuration"):
|
| 67 |
+
# Select task
|
| 68 |
selected_task = st.selectbox(
|
| 69 |
"Select a task",
|
| 70 |
SUPPORTED_TASKS,
|
| 71 |
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
| 72 |
)
|
| 73 |
+
# Select config
|
| 74 |
configs = get_dataset_config_names(selected_dataset)
|
| 75 |
selected_config = st.selectbox("Select a config", configs)
|
| 76 |
|
| 77 |
+
# Select splits
|
| 78 |
+
splits_resp = http_get(
|
| 79 |
+
path="/splits",
|
| 80 |
+
domain=DATASETS_PREVIEW_API,
|
| 81 |
+
params={"dataset": selected_dataset},
|
| 82 |
+
)
|
| 83 |
if splits_resp.status_code == 200:
|
| 84 |
split_names = []
|
| 85 |
all_splits = splits_resp.json()
|
|
|
|
| 93 |
index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0,
|
| 94 |
)
|
| 95 |
|
| 96 |
+
# Select columns
|
| 97 |
rows_resp = http_get(
|
| 98 |
path="/rows",
|
| 99 |
domain=DATASETS_PREVIEW_API,
|
| 100 |
+
params={
|
| 101 |
+
"dataset": selected_dataset,
|
| 102 |
+
"config": selected_config,
|
| 103 |
+
"split": selected_split,
|
| 104 |
+
},
|
| 105 |
).json()
|
| 106 |
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
| 107 |
|
|
|
|
| 143 |
st.markdown("`tags` column")
|
| 144 |
with col2:
|
| 145 |
tokens_col = st.selectbox(
|
| 146 |
+
"This column should contain the array of tokens",
|
| 147 |
col_names,
|
| 148 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
|
| 149 |
)
|
|
|
|
| 252 |
|
| 253 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
| 254 |
print("Selected models:", selected_models)
|
| 255 |
+
|
| 256 |
+
selected_models = filter_evaluated_models(
|
| 257 |
+
selected_models,
|
| 258 |
+
selected_task,
|
| 259 |
+
selected_dataset,
|
| 260 |
+
selected_config,
|
| 261 |
+
selected_split,
|
| 262 |
+
)
|
| 263 |
+
print("Selected models:", selected_models)
|
| 264 |
+
|
| 265 |
submit_button = st.form_submit_button("Make submission")
|
| 266 |
|
| 267 |
if submit_button:
|
| 268 |
+
if len(selected_models) > 0:
|
| 269 |
+
project_id = str(uuid.uuid4())[:3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
payload = {
|
| 271 |
+
"username": AUTOTRAIN_USERNAME,
|
| 272 |
+
"proj_name": f"my-eval-project-{project_id}",
|
| 273 |
+
"task": TASK_TO_ID[selected_task],
|
| 274 |
+
"config": {
|
| 275 |
+
"language": "en",
|
| 276 |
+
"max_models": 5,
|
| 277 |
+
"instance": {
|
| 278 |
+
"provider": "aws",
|
| 279 |
+
"instance_type": "ml.g4dn.4xlarge",
|
| 280 |
+
"max_runtime_seconds": 172800,
|
| 281 |
+
"num_instances": 1,
|
| 282 |
+
"disk_size_gb": 150,
|
| 283 |
+
},
|
| 284 |
+
"evaluation": {
|
| 285 |
+
"metrics": [],
|
| 286 |
+
"models": selected_models,
|
| 287 |
+
},
|
| 288 |
+
},
|
| 289 |
}
|
| 290 |
+
print(f"Payload: {payload}")
|
| 291 |
+
project_json_resp = http_post(
|
| 292 |
+
path="/projects/create",
|
| 293 |
payload=payload,
|
| 294 |
token=HF_TOKEN,
|
| 295 |
domain=AUTOTRAIN_BACKEND_API,
|
|
|
|
| 296 |
).json()
|
| 297 |
+
print(project_json_resp)
|
| 298 |
+
|
| 299 |
+
if project_json_resp["created"]:
|
| 300 |
+
payload = {
|
| 301 |
+
"split": 4, # use "auto" split choice in AutoTrain
|
| 302 |
+
"col_mapping": col_mapping,
|
| 303 |
+
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
| 304 |
+
}
|
| 305 |
+
data_json_resp = http_post(
|
| 306 |
+
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
|
| 307 |
+
payload=payload,
|
| 308 |
token=HF_TOKEN,
|
| 309 |
domain=AUTOTRAIN_BACKEND_API,
|
| 310 |
+
params={
|
| 311 |
+
"type": "dataset",
|
| 312 |
+
"config_name": selected_config,
|
| 313 |
+
"split_name": selected_split,
|
| 314 |
+
},
|
| 315 |
).json()
|
| 316 |
+
print(data_json_resp)
|
| 317 |
+
if data_json_resp["download_status"] == 1:
|
| 318 |
+
train_json_resp = http_get(
|
| 319 |
+
path=f"/projects/{project_json_resp['id']}/data/start_process",
|
| 320 |
+
token=HF_TOKEN,
|
| 321 |
+
domain=AUTOTRAIN_BACKEND_API,
|
| 322 |
+
).json()
|
| 323 |
+
print(train_json_resp)
|
| 324 |
+
if train_json_resp["success"]:
|
| 325 |
+
st.success(f"β
Successfully submitted evaluation job with project ID {project_id}")
|
| 326 |
+
st.markdown(
|
| 327 |
+
"""
|
| 328 |
+
Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
|
| 329 |
|
| 330 |
+
* π Click [here](https://huggingface.co/spaces/autoevaluate/leaderboards) to view the \
|
| 331 |
+
results from your submission
|
| 332 |
+
"""
|
| 333 |
+
)
|
| 334 |
+
else:
|
| 335 |
+
st.error("π Oh noes, there was an error submitting your evaluation job!")
|
| 336 |
+
else:
|
| 337 |
+
st.warning("β οΈ No models were selected for evaluation!")
|
evaluation.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from huggingface_hub import DatasetFilter, HfApi
|
| 5 |
+
from huggingface_hub.hf_api import DatasetInfo
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@dataclass(frozen=True, eq=True)
|
| 9 |
+
class EvaluationInfo:
|
| 10 |
+
task: str
|
| 11 |
+
model: str
|
| 12 |
+
dataset_name: str
|
| 13 |
+
dataset_config: str
|
| 14 |
+
dataset_split: str
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def compute_evaluation_id(dataset_info: DatasetInfo) -> int:
|
| 18 |
+
metadata = dataset_info.cardData["eval_info"]
|
| 19 |
+
metadata.pop("col_mapping", None)
|
| 20 |
+
evaluation_info = EvaluationInfo(**metadata)
|
| 21 |
+
return hash(evaluation_info)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_evaluation_ids():
|
| 25 |
+
filt = DatasetFilter(author="autoevaluate")
|
| 26 |
+
evaluation_datasets = HfApi().list_datasets(filter=filt, full=True)
|
| 27 |
+
return [compute_evaluation_id(dset) for dset in evaluation_datasets]
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def filter_evaluated_models(models, task, dataset_name, dataset_config, dataset_split):
|
| 31 |
+
evaluation_ids = get_evaluation_ids()
|
| 32 |
+
|
| 33 |
+
for idx, model in enumerate(models):
|
| 34 |
+
evaluation_info = EvaluationInfo(
|
| 35 |
+
task=task,
|
| 36 |
+
model=model,
|
| 37 |
+
dataset_name=dataset_name,
|
| 38 |
+
dataset_config=dataset_config,
|
| 39 |
+
dataset_split=dataset_split,
|
| 40 |
+
)
|
| 41 |
+
candidate_id = hash(evaluation_info)
|
| 42 |
+
if candidate_id in evaluation_ids:
|
| 43 |
+
st.info(f"Model {model} has already been evaluated on this configuration. Skipping evaluation...")
|
| 44 |
+
models.pop(idx)
|
| 45 |
+
|
| 46 |
+
return models
|
pyproject.toml
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.isort]
|
| 2 |
+
profile = "black"
|
utils.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from typing import Dict, Union
|
| 2 |
|
| 3 |
import requests
|
| 4 |
-
from huggingface_hub import
|
| 5 |
|
| 6 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
| 7 |
"binary_classification": "text-classification",
|
|
@@ -27,7 +27,11 @@ def http_post(path: str, token: str, payload=None, domain: str = None, params=No
|
|
| 27 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 28 |
try:
|
| 29 |
response = requests.post(
|
| 30 |
-
url=domain + path,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
)
|
| 32 |
except requests.exceptions.ConnectionError:
|
| 33 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
@@ -39,7 +43,10 @@ def http_get(path: str, domain: str, token: str = None, params: dict = None) ->
|
|
| 39 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 40 |
try:
|
| 41 |
response = requests.get(
|
| 42 |
-
url=domain + path,
|
|
|
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
except requests.exceptions.ConnectionError:
|
| 45 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
@@ -58,7 +65,9 @@ def get_metadata(dataset_name: str) -> Union[Dict, None]:
|
|
| 58 |
def get_compatible_models(task, dataset_name):
|
| 59 |
# TODO: relax filter on PyTorch models once supported in AutoTrain
|
| 60 |
filt = ModelFilter(
|
| 61 |
-
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
|
|
|
|
|
|
|
| 62 |
)
|
| 63 |
compatible_models = api.list_models(filter=filt)
|
| 64 |
return [model.modelId for model in compatible_models]
|
|
|
|
| 1 |
from typing import Dict, Union
|
| 2 |
|
| 3 |
import requests
|
| 4 |
+
from huggingface_hub import HfApi, ModelFilter
|
| 5 |
|
| 6 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
| 7 |
"binary_classification": "text-classification",
|
|
|
|
| 27 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 28 |
try:
|
| 29 |
response = requests.post(
|
| 30 |
+
url=domain + path,
|
| 31 |
+
json=payload,
|
| 32 |
+
headers=get_auth_headers(token=token),
|
| 33 |
+
allow_redirects=True,
|
| 34 |
+
params=params,
|
| 35 |
)
|
| 36 |
except requests.exceptions.ConnectionError:
|
| 37 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
|
|
| 43 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
| 44 |
try:
|
| 45 |
response = requests.get(
|
| 46 |
+
url=domain + path,
|
| 47 |
+
headers=get_auth_headers(token=token),
|
| 48 |
+
allow_redirects=True,
|
| 49 |
+
params=params,
|
| 50 |
)
|
| 51 |
except requests.exceptions.ConnectionError:
|
| 52 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
|
|
| 65 |
def get_compatible_models(task, dataset_name):
|
| 66 |
# TODO: relax filter on PyTorch models once supported in AutoTrain
|
| 67 |
filt = ModelFilter(
|
| 68 |
+
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
|
| 69 |
+
trained_dataset=dataset_name,
|
| 70 |
+
library=["transformers", "pytorch"],
|
| 71 |
)
|
| 72 |
compatible_models = api.list_models(filter=filt)
|
| 73 |
return [model.modelId for model in compatible_models]
|