Spaces:
Runtime error
Runtime error
Commit
·
77be950
1
Parent(s):
4ff54dd
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,693 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import time
|
| 3 |
-
from pathlib import Path
|
| 4 |
-
|
| 5 |
-
import pandas as pd
|
| 6 |
-
import streamlit as st
|
| 7 |
-
import yaml
|
| 8 |
-
from datasets import get_dataset_config_names
|
| 9 |
-
from dotenv import load_dotenv
|
| 10 |
-
from huggingface_hub import list_datasets
|
| 11 |
-
|
| 12 |
-
from evaluation import filter_evaluated_models
|
| 13 |
-
from utils import (
|
| 14 |
-
AUTOTRAIN_TASK_TO_HUB_TASK,
|
| 15 |
-
commit_evaluation_log,
|
| 16 |
-
create_autotrain_project_name,
|
| 17 |
-
format_col_mapping,
|
| 18 |
-
get_compatible_models,
|
| 19 |
-
get_config_metadata,
|
| 20 |
-
get_dataset_card_url,
|
| 21 |
-
get_key,
|
| 22 |
-
get_metadata,
|
| 23 |
-
http_get,
|
| 24 |
-
http_post,
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
if Path(".env").is_file():
|
| 28 |
-
load_dotenv(".env")
|
| 29 |
-
|
| 30 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 31 |
-
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
| 32 |
-
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
| 33 |
-
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
|
| 34 |
-
|
| 35 |
-
# Put image tasks on top
|
| 36 |
-
TASK_TO_ID = {
|
| 37 |
-
"image_binary_classification": 17,
|
| 38 |
-
"image_multi_class_classification": 18,
|
| 39 |
-
"binary_classification": 1,
|
| 40 |
-
"multi_class_classification": 2,
|
| 41 |
-
"natural_language_inference": 22,
|
| 42 |
-
"entity_extraction": 4,
|
| 43 |
-
"extractive_question_answering": 5,
|
| 44 |
-
"translation": 6,
|
| 45 |
-
"summarization": 8,
|
| 46 |
-
"text_zero_shot_classification": 23,
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
TASK_TO_DEFAULT_METRICS = {
|
| 50 |
-
"binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
|
| 51 |
-
"multi_class_classification": [
|
| 52 |
-
"f1",
|
| 53 |
-
"precision",
|
| 54 |
-
"recall",
|
| 55 |
-
"accuracy",
|
| 56 |
-
],
|
| 57 |
-
"natural_language_inference": ["f1", "precision", "recall", "auc", "accuracy"],
|
| 58 |
-
"entity_extraction": ["precision", "recall", "f1", "accuracy"],
|
| 59 |
-
"extractive_question_answering": ["f1", "exact_match"],
|
| 60 |
-
"translation": ["sacrebleu"],
|
| 61 |
-
"summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum"],
|
| 62 |
-
"image_binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
|
| 63 |
-
"image_multi_class_classification": [
|
| 64 |
-
"f1",
|
| 65 |
-
"precision",
|
| 66 |
-
"recall",
|
| 67 |
-
"accuracy",
|
| 68 |
-
],
|
| 69 |
-
"text_zero_shot_classification": ["accuracy", "loss"],
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
AUTOTRAIN_TASK_TO_LANG = {
|
| 73 |
-
"translation": "en2de",
|
| 74 |
-
"image_binary_classification": "unk",
|
| 75 |
-
"image_multi_class_classification": "unk",
|
| 76 |
-
}
|
| 77 |
-
|
| 78 |
-
AUTOTRAIN_MACHINE = {"text_zero_shot_classification": "r5.16x"}
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
| 82 |
-
|
| 83 |
-
# Extracted from utils.get_supported_metrics
|
| 84 |
-
# Hardcoded for now due to speed / caching constraints
|
| 85 |
-
SUPPORTED_METRICS = [
|
| 86 |
-
"accuracy",
|
| 87 |
-
"bertscore",
|
| 88 |
-
"bleu",
|
| 89 |
-
"cer",
|
| 90 |
-
"chrf",
|
| 91 |
-
"code_eval",
|
| 92 |
-
"comet",
|
| 93 |
-
"competition_math",
|
| 94 |
-
"coval",
|
| 95 |
-
"cuad",
|
| 96 |
-
"exact_match",
|
| 97 |
-
"f1",
|
| 98 |
-
"frugalscore",
|
| 99 |
-
"google_bleu",
|
| 100 |
-
"mae",
|
| 101 |
-
"mahalanobis",
|
| 102 |
-
"matthews_correlation",
|
| 103 |
-
"mean_iou",
|
| 104 |
-
"meteor",
|
| 105 |
-
"mse",
|
| 106 |
-
"pearsonr",
|
| 107 |
-
"perplexity",
|
| 108 |
-
"precision",
|
| 109 |
-
"recall",
|
| 110 |
-
"roc_auc",
|
| 111 |
-
"rouge",
|
| 112 |
-
"sacrebleu",
|
| 113 |
-
"sari",
|
| 114 |
-
"seqeval",
|
| 115 |
-
"spearmanr",
|
| 116 |
-
"squad",
|
| 117 |
-
"squad_v2",
|
| 118 |
-
"ter",
|
| 119 |
-
"trec_eval",
|
| 120 |
-
"wer",
|
| 121 |
-
"wiki_split",
|
| 122 |
-
"xnli",
|
| 123 |
-
"angelina-wang/directional_bias_amplification",
|
| 124 |
-
"jordyvl/ece",
|
| 125 |
-
"lvwerra/ai4code",
|
| 126 |
-
"lvwerra/amex",
|
| 127 |
-
]
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
#######
|
| 131 |
-
# APP #
|
| 132 |
-
#######
|
| 133 |
-
st.title("Evaluation on the Hub")
|
| 134 |
-
st.markdown(
|
| 135 |
-
"""
|
| 136 |
-
Welcome to Hugging Face's automatic model evaluator 👋!
|
| 137 |
-
|
| 138 |
-
This application allows you to evaluate 🤗 Transformers
|
| 139 |
-
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
| 140 |
-
across a wide variety of [datasets](https://huggingface.co/datasets) on the
|
| 141 |
-
Hub. Please select the dataset and configuration below. The results of your
|
| 142 |
-
evaluation will be displayed on the [public
|
| 143 |
-
leaderboards](https://huggingface.co/spaces/autoevaluate/leaderboards). For
|
| 144 |
-
more details, check out out our [blog
|
| 145 |
-
post](https://huggingface.co/blog/eval-on-the-hub).
|
| 146 |
-
"""
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
all_datasets = [d.id for d in list_datasets()]
|
| 150 |
-
query_params = st.experimental_get_query_params()
|
| 151 |
-
if "first_query_params" not in st.session_state:
|
| 152 |
-
st.session_state.first_query_params = query_params
|
| 153 |
-
first_query_params = st.session_state.first_query_params
|
| 154 |
-
default_dataset = all_datasets[0]
|
| 155 |
-
if "dataset" in first_query_params:
|
| 156 |
-
if len(first_query_params["dataset"]) > 0 and first_query_params["dataset"][0] in all_datasets:
|
| 157 |
-
default_dataset = first_query_params["dataset"][0]
|
| 158 |
-
|
| 159 |
-
selected_dataset = st.selectbox(
|
| 160 |
-
"Select a dataset",
|
| 161 |
-
all_datasets,
|
| 162 |
-
index=all_datasets.index(default_dataset),
|
| 163 |
-
help="""Datasets with metadata can be evaluated with 1-click. Configure an evaluation job to add \
|
| 164 |
-
new metadata to a dataset card.""",
|
| 165 |
-
)
|
| 166 |
-
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
| 167 |
-
|
| 168 |
-
# Check if selected dataset can be streamed
|
| 169 |
-
is_valid_dataset = http_get(
|
| 170 |
-
path="/is-valid",
|
| 171 |
-
domain=DATASETS_PREVIEW_API,
|
| 172 |
-
params={"dataset": selected_dataset},
|
| 173 |
-
).json()
|
| 174 |
-
if is_valid_dataset["viewer"] is False and is_valid_dataset["preview"] is False:
|
| 175 |
-
st.error(
|
| 176 |
-
"""The dataset you selected is not currently supported. Open a \
|
| 177 |
-
[discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) for support."""
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
metadata = get_metadata(selected_dataset, token=HF_TOKEN)
|
| 181 |
-
print(f"INFO -- Dataset metadata: {metadata}")
|
| 182 |
-
if metadata is None:
|
| 183 |
-
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
| 184 |
-
|
| 185 |
-
with st.expander("Advanced configuration"):
|
| 186 |
-
# Select task
|
| 187 |
-
selected_task = st.selectbox(
|
| 188 |
-
"Select a task",
|
| 189 |
-
SUPPORTED_TASKS,
|
| 190 |
-
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
| 191 |
-
help="""Don't see your favourite task here? Open a \
|
| 192 |
-
[discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) to request it!""",
|
| 193 |
-
)
|
| 194 |
-
# Select config
|
| 195 |
-
configs = get_dataset_config_names(selected_dataset)
|
| 196 |
-
selected_config = st.selectbox(
|
| 197 |
-
"Select a config",
|
| 198 |
-
configs,
|
| 199 |
-
help="""Some datasets contain several sub-datasets, known as _configurations_. \
|
| 200 |
-
Select one to evaluate your models on. \
|
| 201 |
-
See the [docs](https://huggingface.co/docs/datasets/master/en/load_hub#configurations) for more details.
|
| 202 |
-
""",
|
| 203 |
-
)
|
| 204 |
-
# Some datasets have multiple metadata (one per config), so we grab the one associated with the selected config
|
| 205 |
-
config_metadata = get_config_metadata(selected_config, metadata)
|
| 206 |
-
print(f"INFO -- Config metadata: {config_metadata}")
|
| 207 |
-
|
| 208 |
-
# Select splits
|
| 209 |
-
splits_resp = http_get(
|
| 210 |
-
path="/splits",
|
| 211 |
-
domain=DATASETS_PREVIEW_API,
|
| 212 |
-
params={"dataset": selected_dataset},
|
| 213 |
-
)
|
| 214 |
-
if splits_resp.status_code == 200:
|
| 215 |
-
split_names = []
|
| 216 |
-
all_splits = splits_resp.json()
|
| 217 |
-
for split in all_splits["splits"]:
|
| 218 |
-
if split["config"] == selected_config:
|
| 219 |
-
split_names.append(split["split"])
|
| 220 |
-
|
| 221 |
-
if config_metadata is not None:
|
| 222 |
-
eval_split = config_metadata["splits"].get("eval_split", None)
|
| 223 |
-
else:
|
| 224 |
-
eval_split = None
|
| 225 |
-
selected_split = st.selectbox(
|
| 226 |
-
"Select a split",
|
| 227 |
-
split_names,
|
| 228 |
-
index=split_names.index(eval_split) if eval_split is not None else 0,
|
| 229 |
-
help="Be wary when evaluating models on the `train` split.",
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
# Select columns
|
| 233 |
-
rows_resp = http_get(
|
| 234 |
-
path="/first-rows",
|
| 235 |
-
domain=DATASETS_PREVIEW_API,
|
| 236 |
-
params={
|
| 237 |
-
"dataset": selected_dataset,
|
| 238 |
-
"config": selected_config,
|
| 239 |
-
"split": selected_split,
|
| 240 |
-
},
|
| 241 |
-
).json()
|
| 242 |
-
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
| 243 |
-
|
| 244 |
-
st.markdown("**Map your dataset columns**")
|
| 245 |
-
st.markdown(
|
| 246 |
-
"""The model evaluator uses a standardised set of column names for the input examples and labels. \
|
| 247 |
-
Please define the mapping between your dataset columns (right) and the standardised column names (left)."""
|
| 248 |
-
)
|
| 249 |
-
col1, col2 = st.columns(2)
|
| 250 |
-
|
| 251 |
-
# TODO: find a better way to layout these items
|
| 252 |
-
# TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
|
| 253 |
-
col_mapping = {}
|
| 254 |
-
if selected_task in ["binary_classification", "multi_class_classification"]:
|
| 255 |
-
with col1:
|
| 256 |
-
st.markdown("`text` column")
|
| 257 |
-
st.text("")
|
| 258 |
-
st.text("")
|
| 259 |
-
st.text("")
|
| 260 |
-
st.text("")
|
| 261 |
-
st.markdown("`target` column")
|
| 262 |
-
with col2:
|
| 263 |
-
text_col = st.selectbox(
|
| 264 |
-
"This column should contain the text to be classified",
|
| 265 |
-
col_names,
|
| 266 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
|
| 267 |
-
if config_metadata is not None
|
| 268 |
-
else 0,
|
| 269 |
-
)
|
| 270 |
-
target_col = st.selectbox(
|
| 271 |
-
"This column should contain the labels associated with the text",
|
| 272 |
-
col_names,
|
| 273 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 274 |
-
if config_metadata is not None
|
| 275 |
-
else 0,
|
| 276 |
-
)
|
| 277 |
-
col_mapping[text_col] = "text"
|
| 278 |
-
col_mapping[target_col] = "target"
|
| 279 |
-
|
| 280 |
-
elif selected_task == "text_zero_shot_classification":
|
| 281 |
-
with col1:
|
| 282 |
-
st.markdown("`text` column")
|
| 283 |
-
st.text("")
|
| 284 |
-
st.text("")
|
| 285 |
-
st.text("")
|
| 286 |
-
st.text("")
|
| 287 |
-
st.markdown("`classes` column")
|
| 288 |
-
st.text("")
|
| 289 |
-
st.text("")
|
| 290 |
-
st.text("")
|
| 291 |
-
st.text("")
|
| 292 |
-
st.markdown("`target` column")
|
| 293 |
-
with col2:
|
| 294 |
-
text_col = st.selectbox(
|
| 295 |
-
"This column should contain the text to be classified",
|
| 296 |
-
col_names,
|
| 297 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
|
| 298 |
-
if config_metadata is not None
|
| 299 |
-
else 0,
|
| 300 |
-
)
|
| 301 |
-
classes_col = st.selectbox(
|
| 302 |
-
"This column should contain the classes associated with the text",
|
| 303 |
-
col_names,
|
| 304 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "classes"))
|
| 305 |
-
if config_metadata is not None
|
| 306 |
-
else 0,
|
| 307 |
-
)
|
| 308 |
-
target_col = st.selectbox(
|
| 309 |
-
"This column should contain the index of the correct class",
|
| 310 |
-
col_names,
|
| 311 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 312 |
-
if config_metadata is not None
|
| 313 |
-
else 0,
|
| 314 |
-
)
|
| 315 |
-
col_mapping[text_col] = "text"
|
| 316 |
-
col_mapping[classes_col] = "classes"
|
| 317 |
-
col_mapping[target_col] = "target"
|
| 318 |
-
|
| 319 |
-
if selected_task in ["natural_language_inference"]:
|
| 320 |
-
config_metadata = get_config_metadata(selected_config, metadata)
|
| 321 |
-
with col1:
|
| 322 |
-
st.markdown("`text1` column")
|
| 323 |
-
st.text("")
|
| 324 |
-
st.text("")
|
| 325 |
-
st.text("")
|
| 326 |
-
st.text("")
|
| 327 |
-
st.text("")
|
| 328 |
-
st.markdown("`text2` column")
|
| 329 |
-
st.text("")
|
| 330 |
-
st.text("")
|
| 331 |
-
st.text("")
|
| 332 |
-
st.text("")
|
| 333 |
-
st.text("")
|
| 334 |
-
st.markdown("`target` column")
|
| 335 |
-
with col2:
|
| 336 |
-
text1_col = st.selectbox(
|
| 337 |
-
"This column should contain the first text passage to be classified",
|
| 338 |
-
col_names,
|
| 339 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text1"))
|
| 340 |
-
if config_metadata is not None
|
| 341 |
-
else 0,
|
| 342 |
-
)
|
| 343 |
-
text2_col = st.selectbox(
|
| 344 |
-
"This column should contain the second text passage to be classified",
|
| 345 |
-
col_names,
|
| 346 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text2"))
|
| 347 |
-
if config_metadata is not None
|
| 348 |
-
else 0,
|
| 349 |
-
)
|
| 350 |
-
target_col = st.selectbox(
|
| 351 |
-
"This column should contain the labels associated with the text",
|
| 352 |
-
col_names,
|
| 353 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 354 |
-
if config_metadata is not None
|
| 355 |
-
else 0,
|
| 356 |
-
)
|
| 357 |
-
col_mapping[text1_col] = "text1"
|
| 358 |
-
col_mapping[text2_col] = "text2"
|
| 359 |
-
col_mapping[target_col] = "target"
|
| 360 |
-
|
| 361 |
-
elif selected_task == "entity_extraction":
|
| 362 |
-
with col1:
|
| 363 |
-
st.markdown("`tokens` column")
|
| 364 |
-
st.text("")
|
| 365 |
-
st.text("")
|
| 366 |
-
st.text("")
|
| 367 |
-
st.text("")
|
| 368 |
-
st.markdown("`tags` column")
|
| 369 |
-
with col2:
|
| 370 |
-
tokens_col = st.selectbox(
|
| 371 |
-
"This column should contain the array of tokens to be classified",
|
| 372 |
-
col_names,
|
| 373 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "tokens"))
|
| 374 |
-
if config_metadata is not None
|
| 375 |
-
else 0,
|
| 376 |
-
)
|
| 377 |
-
tags_col = st.selectbox(
|
| 378 |
-
"This column should contain the labels associated with each part of the text",
|
| 379 |
-
col_names,
|
| 380 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "tags"))
|
| 381 |
-
if config_metadata is not None
|
| 382 |
-
else 0,
|
| 383 |
-
)
|
| 384 |
-
col_mapping[tokens_col] = "tokens"
|
| 385 |
-
col_mapping[tags_col] = "tags"
|
| 386 |
-
|
| 387 |
-
elif selected_task == "translation":
|
| 388 |
-
with col1:
|
| 389 |
-
st.markdown("`source` column")
|
| 390 |
-
st.text("")
|
| 391 |
-
st.text("")
|
| 392 |
-
st.text("")
|
| 393 |
-
st.text("")
|
| 394 |
-
st.markdown("`target` column")
|
| 395 |
-
with col2:
|
| 396 |
-
text_col = st.selectbox(
|
| 397 |
-
"This column should contain the text to be translated",
|
| 398 |
-
col_names,
|
| 399 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "source"))
|
| 400 |
-
if config_metadata is not None
|
| 401 |
-
else 0,
|
| 402 |
-
)
|
| 403 |
-
target_col = st.selectbox(
|
| 404 |
-
"This column should contain the target translation",
|
| 405 |
-
col_names,
|
| 406 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 407 |
-
if config_metadata is not None
|
| 408 |
-
else 0,
|
| 409 |
-
)
|
| 410 |
-
col_mapping[text_col] = "source"
|
| 411 |
-
col_mapping[target_col] = "target"
|
| 412 |
-
|
| 413 |
-
elif selected_task == "summarization":
|
| 414 |
-
with col1:
|
| 415 |
-
st.markdown("`text` column")
|
| 416 |
-
st.text("")
|
| 417 |
-
st.text("")
|
| 418 |
-
st.text("")
|
| 419 |
-
st.text("")
|
| 420 |
-
st.markdown("`target` column")
|
| 421 |
-
with col2:
|
| 422 |
-
text_col = st.selectbox(
|
| 423 |
-
"This column should contain the text to be summarized",
|
| 424 |
-
col_names,
|
| 425 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
|
| 426 |
-
if config_metadata is not None
|
| 427 |
-
else 0,
|
| 428 |
-
)
|
| 429 |
-
target_col = st.selectbox(
|
| 430 |
-
"This column should contain the target summary",
|
| 431 |
-
col_names,
|
| 432 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 433 |
-
if config_metadata is not None
|
| 434 |
-
else 0,
|
| 435 |
-
)
|
| 436 |
-
col_mapping[text_col] = "text"
|
| 437 |
-
col_mapping[target_col] = "target"
|
| 438 |
-
|
| 439 |
-
elif selected_task == "extractive_question_answering":
|
| 440 |
-
if config_metadata is not None:
|
| 441 |
-
col_mapping = config_metadata["col_mapping"]
|
| 442 |
-
# Hub YAML parser converts periods to hyphens, so we remap them here
|
| 443 |
-
col_mapping = format_col_mapping(col_mapping)
|
| 444 |
-
with col1:
|
| 445 |
-
st.markdown("`context` column")
|
| 446 |
-
st.text("")
|
| 447 |
-
st.text("")
|
| 448 |
-
st.text("")
|
| 449 |
-
st.text("")
|
| 450 |
-
st.markdown("`question` column")
|
| 451 |
-
st.text("")
|
| 452 |
-
st.text("")
|
| 453 |
-
st.text("")
|
| 454 |
-
st.text("")
|
| 455 |
-
st.markdown("`answers.text` column")
|
| 456 |
-
st.text("")
|
| 457 |
-
st.text("")
|
| 458 |
-
st.text("")
|
| 459 |
-
st.text("")
|
| 460 |
-
st.markdown("`answers.answer_start` column")
|
| 461 |
-
with col2:
|
| 462 |
-
context_col = st.selectbox(
|
| 463 |
-
"This column should contain the question's context",
|
| 464 |
-
col_names,
|
| 465 |
-
index=col_names.index(get_key(col_mapping, "context")) if config_metadata is not None else 0,
|
| 466 |
-
)
|
| 467 |
-
question_col = st.selectbox(
|
| 468 |
-
"This column should contain the question to be answered, given the context",
|
| 469 |
-
col_names,
|
| 470 |
-
index=col_names.index(get_key(col_mapping, "question")) if config_metadata is not None else 0,
|
| 471 |
-
)
|
| 472 |
-
answers_text_col = st.selectbox(
|
| 473 |
-
"This column should contain example answers to the question, extracted from the context",
|
| 474 |
-
col_names,
|
| 475 |
-
index=col_names.index(get_key(col_mapping, "answers.text")) if config_metadata is not None else 0,
|
| 476 |
-
)
|
| 477 |
-
answers_start_col = st.selectbox(
|
| 478 |
-
"This column should contain the indices in the context of the first character of each `answers.text`",
|
| 479 |
-
col_names,
|
| 480 |
-
index=col_names.index(get_key(col_mapping, "answers.answer_start"))
|
| 481 |
-
if config_metadata is not None
|
| 482 |
-
else 0,
|
| 483 |
-
)
|
| 484 |
-
col_mapping[context_col] = "context"
|
| 485 |
-
col_mapping[question_col] = "question"
|
| 486 |
-
col_mapping[answers_text_col] = "answers.text"
|
| 487 |
-
col_mapping[answers_start_col] = "answers.answer_start"
|
| 488 |
-
elif selected_task in ["image_binary_classification", "image_multi_class_classification"]:
|
| 489 |
-
with col1:
|
| 490 |
-
st.markdown("`image` column")
|
| 491 |
-
st.text("")
|
| 492 |
-
st.text("")
|
| 493 |
-
st.text("")
|
| 494 |
-
st.text("")
|
| 495 |
-
st.markdown("`target` column")
|
| 496 |
-
with col2:
|
| 497 |
-
image_col = st.selectbox(
|
| 498 |
-
"This column should contain the images to be classified",
|
| 499 |
-
col_names,
|
| 500 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "image"))
|
| 501 |
-
if config_metadata is not None
|
| 502 |
-
else 0,
|
| 503 |
-
)
|
| 504 |
-
target_col = st.selectbox(
|
| 505 |
-
"This column should contain the labels associated with the images",
|
| 506 |
-
col_names,
|
| 507 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
| 508 |
-
if config_metadata is not None
|
| 509 |
-
else 0,
|
| 510 |
-
)
|
| 511 |
-
col_mapping[image_col] = "image"
|
| 512 |
-
col_mapping[target_col] = "target"
|
| 513 |
-
|
| 514 |
-
# Select metrics
|
| 515 |
-
st.markdown("**Select metrics**")
|
| 516 |
-
st.markdown("The following metrics will be computed")
|
| 517 |
-
html_string = " ".join(
|
| 518 |
-
[
|
| 519 |
-
'<div style="padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left">'
|
| 520 |
-
+ '<div style="background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;'
|
| 521 |
-
+ 'padding-left:5px;color:white">'
|
| 522 |
-
+ metric
|
| 523 |
-
+ "</div></div>"
|
| 524 |
-
for metric in TASK_TO_DEFAULT_METRICS[selected_task]
|
| 525 |
-
]
|
| 526 |
-
)
|
| 527 |
-
st.markdown(html_string, unsafe_allow_html=True)
|
| 528 |
-
selected_metrics = st.multiselect(
|
| 529 |
-
"(Optional) Select additional metrics",
|
| 530 |
-
sorted(list(set(SUPPORTED_METRICS) - set(TASK_TO_DEFAULT_METRICS[selected_task]))),
|
| 531 |
-
help="""User-selected metrics will be computed with their default arguments. \
|
| 532 |
-
For example, `f1` will report results for binary labels. \
|
| 533 |
-
Check out the [available metrics](https://huggingface.co/metrics) for more details.""",
|
| 534 |
-
)
|
| 535 |
-
|
| 536 |
-
with st.form(key="form"):
|
| 537 |
-
compatible_models = get_compatible_models(selected_task, [selected_dataset])
|
| 538 |
-
selected_models = st.multiselect(
|
| 539 |
-
"Select the models you wish to evaluate",
|
| 540 |
-
compatible_models,
|
| 541 |
-
help="""Don't see your favourite model in this list? Add the dataset and task it was trained on to the \
|
| 542 |
-
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
|
| 543 |
-
)
|
| 544 |
-
print("INFO -- Selected models before filter:", selected_models)
|
| 545 |
-
|
| 546 |
-
hf_username = st.text_input("Enter your 🤗 Hub username to be notified when the evaluation is finished")
|
| 547 |
-
|
| 548 |
-
submit_button = st.form_submit_button("Evaluate models 🚀")
|
| 549 |
-
|
| 550 |
-
if submit_button:
|
| 551 |
-
if len(hf_username) == 0:
|
| 552 |
-
st.warning("No 🤗 Hub username provided! Please enter your username and try again.")
|
| 553 |
-
elif len(selected_models) == 0:
|
| 554 |
-
st.warning("⚠️ No models were selected for evaluation! Please select at least one model and try again.")
|
| 555 |
-
elif len(selected_models) > 10:
|
| 556 |
-
st.warning("Only 10 models can be evaluated at once. Please select fewer models and try again.")
|
| 557 |
-
else:
|
| 558 |
-
# Filter out previously evaluated models
|
| 559 |
-
selected_models = filter_evaluated_models(
|
| 560 |
-
selected_models,
|
| 561 |
-
selected_task,
|
| 562 |
-
selected_dataset,
|
| 563 |
-
selected_config,
|
| 564 |
-
selected_split,
|
| 565 |
-
selected_metrics,
|
| 566 |
-
)
|
| 567 |
-
print("INFO -- Selected models after filter:", selected_models)
|
| 568 |
-
if len(selected_models) > 0:
|
| 569 |
-
project_payload = {
|
| 570 |
-
"username": AUTOTRAIN_USERNAME,
|
| 571 |
-
"proj_name": create_autotrain_project_name(selected_dataset, selected_config),
|
| 572 |
-
"task": TASK_TO_ID[selected_task],
|
| 573 |
-
"config": {
|
| 574 |
-
"language": AUTOTRAIN_TASK_TO_LANG[selected_task]
|
| 575 |
-
if selected_task in AUTOTRAIN_TASK_TO_LANG
|
| 576 |
-
else "en",
|
| 577 |
-
"max_models": 5,
|
| 578 |
-
"instance": {
|
| 579 |
-
"provider": "sagemaker" if selected_task in AUTOTRAIN_MACHINE.keys() else "ovh",
|
| 580 |
-
"instance_type": AUTOTRAIN_MACHINE[selected_task]
|
| 581 |
-
if selected_task in AUTOTRAIN_MACHINE.keys()
|
| 582 |
-
else "p3",
|
| 583 |
-
"max_runtime_seconds": 172800,
|
| 584 |
-
"num_instances": 1,
|
| 585 |
-
"disk_size_gb": 200,
|
| 586 |
-
},
|
| 587 |
-
"evaluation": {
|
| 588 |
-
"metrics": selected_metrics,
|
| 589 |
-
"models": selected_models,
|
| 590 |
-
"hf_username": hf_username,
|
| 591 |
-
},
|
| 592 |
-
},
|
| 593 |
-
}
|
| 594 |
-
print(f"INFO -- Payload: {project_payload}")
|
| 595 |
-
project_json_resp = http_post(
|
| 596 |
-
path="/projects/create",
|
| 597 |
-
payload=project_payload,
|
| 598 |
-
token=HF_TOKEN,
|
| 599 |
-
domain=AUTOTRAIN_BACKEND_API,
|
| 600 |
-
).json()
|
| 601 |
-
print(f"INFO -- Project creation response: {project_json_resp}")
|
| 602 |
-
|
| 603 |
-
if project_json_resp["created"]:
|
| 604 |
-
data_payload = {
|
| 605 |
-
"split": 4, # use "auto" split choice in AutoTrain
|
| 606 |
-
"col_mapping": col_mapping,
|
| 607 |
-
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
| 608 |
-
"dataset_id": selected_dataset,
|
| 609 |
-
"dataset_config": selected_config,
|
| 610 |
-
"dataset_split": selected_split,
|
| 611 |
-
}
|
| 612 |
-
data_json_resp = http_post(
|
| 613 |
-
path=f"/projects/{project_json_resp['id']}/data/dataset",
|
| 614 |
-
payload=data_payload,
|
| 615 |
-
token=HF_TOKEN,
|
| 616 |
-
domain=AUTOTRAIN_BACKEND_API,
|
| 617 |
-
).json()
|
| 618 |
-
print(f"INFO -- Dataset creation response: {data_json_resp}")
|
| 619 |
-
if data_json_resp["download_status"] == 1:
|
| 620 |
-
train_json_resp = http_post(
|
| 621 |
-
path=f"/projects/{project_json_resp['id']}/data/start_processing",
|
| 622 |
-
token=HF_TOKEN,
|
| 623 |
-
domain=AUTOTRAIN_BACKEND_API,
|
| 624 |
-
).json()
|
| 625 |
-
# For local development we process and approve projects on-the-fly
|
| 626 |
-
if "localhost" in AUTOTRAIN_BACKEND_API:
|
| 627 |
-
with st.spinner("⏳ Waiting for data processing to complete ..."):
|
| 628 |
-
is_data_processing_success = False
|
| 629 |
-
while is_data_processing_success is not True:
|
| 630 |
-
project_status = http_get(
|
| 631 |
-
path=f"/projects/{project_json_resp['id']}",
|
| 632 |
-
token=HF_TOKEN,
|
| 633 |
-
domain=AUTOTRAIN_BACKEND_API,
|
| 634 |
-
).json()
|
| 635 |
-
if project_status["status"] == 3:
|
| 636 |
-
is_data_processing_success = True
|
| 637 |
-
time.sleep(10)
|
| 638 |
-
|
| 639 |
-
# Approve training job
|
| 640 |
-
train_job_resp = http_post(
|
| 641 |
-
path=f"/projects/{project_json_resp['id']}/start_training",
|
| 642 |
-
token=HF_TOKEN,
|
| 643 |
-
domain=AUTOTRAIN_BACKEND_API,
|
| 644 |
-
).json()
|
| 645 |
-
st.success("✅ Data processing and project approval complete - go forth and evaluate!")
|
| 646 |
-
else:
|
| 647 |
-
# Prod/staging submissions are evaluated in a cron job via run_evaluation_jobs.py
|
| 648 |
-
print(f"INFO -- AutoTrain job response: {train_json_resp}")
|
| 649 |
-
if train_json_resp["success"]:
|
| 650 |
-
train_eval_index = {
|
| 651 |
-
"train-eval-index": [
|
| 652 |
-
{
|
| 653 |
-
"config": selected_config,
|
| 654 |
-
"task": AUTOTRAIN_TASK_TO_HUB_TASK[selected_task],
|
| 655 |
-
"task_id": selected_task,
|
| 656 |
-
"splits": {"eval_split": selected_split},
|
| 657 |
-
"col_mapping": col_mapping,
|
| 658 |
-
}
|
| 659 |
-
]
|
| 660 |
-
}
|
| 661 |
-
selected_metadata = yaml.dump(train_eval_index, sort_keys=False)
|
| 662 |
-
dataset_card_url = get_dataset_card_url(selected_dataset)
|
| 663 |
-
st.success("✅ Successfully submitted evaluation job!")
|
| 664 |
-
st.markdown(
|
| 665 |
-
f"""
|
| 666 |
-
Evaluation can take up to 1 hour to complete, so grab a ☕️ or 🍵 while you wait:
|
| 667 |
-
|
| 668 |
-
* 🔔 A [Hub pull request](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) with the evaluation results will be opened for each model you selected. Check your email for notifications.
|
| 669 |
-
* 📊 Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) to view the results from your submission once the Hub pull request is merged.
|
| 670 |
-
* 🥱 Tired of configuring evaluations? Add the following metadata to the [dataset card]({dataset_card_url}) to enable 1-click evaluations:
|
| 671 |
-
""" # noqa
|
| 672 |
-
)
|
| 673 |
-
st.markdown(
|
| 674 |
-
f"""
|
| 675 |
-
```yaml
|
| 676 |
-
{selected_metadata}
|
| 677 |
-
"""
|
| 678 |
-
)
|
| 679 |
-
print("INFO -- Pushing evaluation job logs to the Hub")
|
| 680 |
-
evaluation_log = {}
|
| 681 |
-
evaluation_log["project_id"] = project_json_resp["id"]
|
| 682 |
-
evaluation_log["autotrain_env"] = (
|
| 683 |
-
"staging" if "staging" in AUTOTRAIN_BACKEND_API else "prod"
|
| 684 |
-
)
|
| 685 |
-
evaluation_log["payload"] = project_payload
|
| 686 |
-
evaluation_log["project_creation_response"] = project_json_resp
|
| 687 |
-
evaluation_log["dataset_creation_response"] = data_json_resp
|
| 688 |
-
evaluation_log["autotrain_job_response"] = train_json_resp
|
| 689 |
-
commit_evaluation_log(evaluation_log, hf_access_token=HF_TOKEN)
|
| 690 |
-
else:
|
| 691 |
-
st.error("🙈 Oh no, there was an error submitting your evaluation job!")
|
| 692 |
-
else:
|
| 693 |
-
st.warning("⚠️ No models left to evaluate! Please select other models and try again.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|