Spaces:
Runtime error
Runtime error
| import copy | |
| from dataclasses import dataclass | |
| import streamlit as st | |
| from huggingface_hub import DatasetFilter, HfApi | |
| from huggingface_hub.hf_api import DatasetInfo | |
| class EvaluationInfo: | |
| task: str | |
| model: str | |
| dataset_name: str | |
| dataset_config: str | |
| dataset_split: str | |
| metrics: set | |
| def create_evaluation_info(dataset_info: DatasetInfo) -> int: | |
| if dataset_info.cardData is not None: | |
| metadata = dataset_info.cardData["eval_info"] | |
| metadata.pop("col_mapping", None) | |
| # TODO(lewtun): populate dataset cards with metric info | |
| if "metrics" not in metadata: | |
| metadata["metrics"] = frozenset() | |
| else: | |
| metadata["metrics"] = frozenset(metadata["metrics"]) | |
| return EvaluationInfo(**metadata) | |
| def get_evaluation_infos(): | |
| filt = DatasetFilter(author="autoevaluate") | |
| evaluation_datasets = HfApi().list_datasets(filter=filt, full=True) | |
| return [create_evaluation_info(dset) for dset in evaluation_datasets] | |
| def filter_evaluated_models(models, task, dataset_name, dataset_config, dataset_split, metrics): | |
| evaluation_infos = get_evaluation_infos() | |
| models_to_filter = copy.copy(models) | |
| for model in models_to_filter: | |
| evaluation_info = EvaluationInfo( | |
| task=task, | |
| model=model, | |
| dataset_name=dataset_name, | |
| dataset_config=dataset_config, | |
| dataset_split=dataset_split, | |
| metrics=frozenset(metrics), | |
| ) | |
| if evaluation_info in evaluation_infos: | |
| st.info( | |
| f"Model [`{model}`](https://huggingface.co/{model}) has already been evaluated on this configuration. \ | |
| This model will be excluded from the evaluation job..." | |
| ) | |
| models.remove(model) | |
| return models | |