Spaces:
Runtime error
Runtime error
| import inspect | |
| import uuid | |
| from typing import Dict, List, Union | |
| import jsonlines | |
| import requests | |
| import streamlit as st | |
| from evaluate import load | |
| from huggingface_hub import HfApi, ModelFilter, Repository, dataset_info, list_metrics | |
| from tqdm import tqdm | |
| AUTOTRAIN_TASK_TO_HUB_TASK = { | |
| "binary_classification": "text-classification", | |
| "multi_class_classification": "text-classification", | |
| "entity_extraction": "token-classification", | |
| "extractive_question_answering": "question-answering", | |
| "translation": "translation", | |
| "summarization": "summarization", | |
| "image_binary_classification": "image-classification", | |
| "image_multi_class_classification": "image-classification", | |
| } | |
| HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()} | |
| LOGS_REPO = "evaluation-job-logs" | |
| def get_auth_headers(token: str, prefix: str = "Bearer"): | |
| return {"Authorization": f"{prefix} {token}"} | |
| def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response: | |
| """HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached""" | |
| try: | |
| response = requests.post( | |
| url=domain + path, | |
| json=payload, | |
| headers=get_auth_headers(token=token), | |
| allow_redirects=True, | |
| params=params, | |
| ) | |
| except requests.exceptions.ConnectionError: | |
| print("β Failed to reach AutoNLP API, check your internet connection") | |
| response.raise_for_status() | |
| return response | |
| def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response: | |
| """HTTP POST request to `path`, raises UnreachableAPIError if the API cannot be reached""" | |
| try: | |
| response = requests.get( | |
| url=domain + path, | |
| headers=get_auth_headers(token=token), | |
| allow_redirects=True, | |
| params=params, | |
| ) | |
| except requests.exceptions.ConnectionError: | |
| print(f"β Failed to reach {path}, check your internet connection") | |
| response.raise_for_status() | |
| return response | |
| def get_metadata(dataset_name: str, token: str) -> Union[Dict, None]: | |
| data = dataset_info(dataset_name, token=token) | |
| if data.cardData is not None and "train-eval-index" in data.cardData.keys(): | |
| return data.cardData["train-eval-index"] | |
| else: | |
| return None | |
| def get_compatible_models(task: str, dataset_ids: List[str]) -> List[str]: | |
| """ | |
| Returns all model IDs that are compatible with the given task and dataset names. | |
| Args: | |
| task (`str`): The task to search for. | |
| dataset_names (`List[str]`): A list of dataset names to search for. | |
| Returns: | |
| A list of model IDs, sorted alphabetically. | |
| """ | |
| compatible_models = [] | |
| # Allow any summarization model to be used for summarization tasks | |
| if task == "summarization": | |
| model_filter = ModelFilter( | |
| task=AUTOTRAIN_TASK_TO_HUB_TASK[task], | |
| library=["transformers", "pytorch"], | |
| ) | |
| compatible_models.extend(HfApi().list_models(filter=model_filter)) | |
| # Include models trained on SQuAD datasets, since these can be evaluated on | |
| # other SQuAD-like datasets | |
| if task == "extractive_question_answering": | |
| dataset_ids.extend(["squad", "squad_v2"]) | |
| # TODO: relax filter on PyTorch models if TensorFlow supported in AutoTrain | |
| for dataset_id in dataset_ids: | |
| model_filter = ModelFilter( | |
| task=AUTOTRAIN_TASK_TO_HUB_TASK[task], | |
| trained_dataset=dataset_id, | |
| library=["transformers", "pytorch"], | |
| ) | |
| compatible_models.extend(HfApi().list_models(filter=model_filter)) | |
| return sorted(set([model.modelId for model in compatible_models])) | |
| def get_key(col_mapping, val): | |
| for key, value in col_mapping.items(): | |
| if val == value: | |
| return key | |
| return "key doesn't exist" | |
| def format_col_mapping(col_mapping: dict) -> dict: | |
| for k, v in col_mapping["answers"].items(): | |
| col_mapping[f"answers.{k}"] = f"answers.{v}" | |
| del col_mapping["answers"] | |
| return col_mapping | |
| def commit_evaluation_log(evaluation_log, hf_access_token=None): | |
| logs_repo_url = f"https://huggingface.co/datasets/autoevaluate/{LOGS_REPO}" | |
| logs_repo = Repository( | |
| local_dir=LOGS_REPO, | |
| clone_from=logs_repo_url, | |
| repo_type="dataset", | |
| private=True, | |
| use_auth_token=hf_access_token, | |
| ) | |
| logs_repo.git_pull() | |
| with jsonlines.open(f"{LOGS_REPO}/logs.jsonl") as r: | |
| lines = [] | |
| for obj in r: | |
| lines.append(obj) | |
| lines.append(evaluation_log) | |
| with jsonlines.open(f"{LOGS_REPO}/logs.jsonl", mode="w") as writer: | |
| for job in lines: | |
| writer.write(job) | |
| logs_repo.push_to_hub( | |
| commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}" | |
| ) | |
| print("INFO -- Pushed evaluation logs to the Hub") | |
| def get_supported_metrics(): | |
| """Helper function to get all metrics compatible with evaluation service. | |
| Requires all metric dependencies installed in the same environment, so wait until | |
| https://github.com/huggingface/evaluate/issues/138 is resolved before using this. | |
| """ | |
| metrics = [metric.id for metric in list_metrics()] | |
| supported_metrics = [] | |
| for metric in tqdm(metrics): | |
| # TODO: this currently requires all metric dependencies to be installed | |
| # in the same environment. Refactor to avoid needing to actually load | |
| # the metric. | |
| try: | |
| print(f"INFO -- Attempting to load metric: {metric}") | |
| metric_func = load(metric) | |
| except Exception as e: | |
| print(e) | |
| print("WARNING -- Skipping the following metric, which cannot load:", metric) | |
| continue | |
| argspec = inspect.getfullargspec(metric_func.compute) | |
| if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs: | |
| # We require that "references" and "predictions" are arguments | |
| # to the metric function. We also require that the other arguments | |
| # besides "references" and "predictions" have defaults and so do not | |
| # need to be specified explicitly. | |
| defaults = True | |
| for key, value in argspec.kwonlydefaults.items(): | |
| if key not in ("references", "predictions"): | |
| if value is None: | |
| defaults = False | |
| break | |
| if defaults: | |
| supported_metrics.append(metric) | |
| return supported_metrics | |
| def get_dataset_card_url(dataset_id: str) -> str: | |
| """Gets the URL to edit the dataset card for the given dataset ID.""" | |
| if "/" in dataset_id: | |
| return f"https://huggingface.co/datasets/{dataset_id}/edit/main/README.md" | |
| else: | |
| return f"https://github.com/huggingface/datasets/edit/master/datasets/{dataset_id}/README.md" | |
| def create_autotrain_project_name(dataset_id: str) -> str: | |
| """Creates an AutoTrain project name for the given dataset ID.""" | |
| # Project names cannot have "/", so we need to format community datasets accordingly | |
| dataset_id_formatted = dataset_id.replace("/", "__") | |
| # Project names need to be unique, so we append a random string to guarantee this | |
| project_id = str(uuid.uuid4())[:8] | |
| return f"eval-project-{dataset_id_formatted}-{project_id}" | |