Spaces:
Running
Running
Commit
·
3fed02b
1
Parent(s):
0266e41
Update backend/modeling_gpt2.py
Browse files- backend/modeling_gpt2.py +650 -436
backend/modeling_gpt2.py
CHANGED
|
@@ -13,51 +13,54 @@
|
|
| 13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
PyTorch OpenAI GPT-2 model.
|
| 19 |
-
Adapted from https://github.com/huggingface/transformers/blob/v4.0.1/src/transformers/models/gpt2/modeling_gpt2.py
|
| 20 |
-
and https://github.com/ghosthamlet/gpt2-ml-torch/blob/master/gpt2_ml_torch/modeling_gpt2.py
|
| 21 |
-
"""
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
import logging
|
| 25 |
import os
|
| 26 |
from dataclasses import dataclass
|
| 27 |
-
from typing import
|
| 28 |
|
| 29 |
import torch
|
| 30 |
-
import torch.
|
| 31 |
-
from
|
| 32 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
from transformers.activations import ACT2FN
|
| 34 |
-
from transformers.file_utils import (
|
| 35 |
-
ModelOutput,
|
| 36 |
-
add_code_sample_docstrings,
|
| 37 |
-
add_start_docstrings,
|
| 38 |
-
add_start_docstrings_to_model_forward,
|
| 39 |
-
replace_return_docstrings,
|
| 40 |
-
)
|
| 41 |
from transformers.modeling_outputs import (
|
| 42 |
BaseModelOutputWithPastAndCrossAttentions,
|
| 43 |
CausalLMOutputWithCrossAttentions,
|
| 44 |
SequenceClassifierOutputWithPast,
|
| 45 |
TokenClassifierOutput,
|
| 46 |
)
|
| 47 |
-
from transformers.modeling_utils import
|
|
|
|
| 48 |
Conv1D,
|
| 49 |
-
PreTrainedModel,
|
| 50 |
-
SequenceSummary,
|
| 51 |
find_pruneable_heads_and_indices,
|
| 52 |
prune_conv1d_layer,
|
| 53 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
|
|
|
| 55 |
|
| 56 |
-
# THe Difference from Transformers is code under _USE_GROVER
|
| 57 |
-
_USE_GROVER = True
|
| 58 |
|
| 59 |
-
logger = logging.
|
| 60 |
|
|
|
|
| 61 |
_CONFIG_FOR_DOC = "GPT2Config"
|
| 62 |
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
|
| 63 |
|
|
@@ -70,11 +73,6 @@ GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
|
| 70 |
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2
|
| 71 |
]
|
| 72 |
|
| 73 |
-
logger.setLevel(logging.INFO)
|
| 74 |
-
console = logging.StreamHandler()
|
| 75 |
-
console.setLevel(logging.INFO)
|
| 76 |
-
logger.addHandler(console)
|
| 77 |
-
|
| 78 |
_GPT2_ML_TF_TO_TORCH = {
|
| 79 |
"LayerNorm_embed_norm": "emb_norm",
|
| 80 |
"pos_embed": "wpe.weight",
|
|
@@ -126,7 +124,6 @@ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
| 126 |
"""Load tf checkpoints in a pytorch model"""
|
| 127 |
try:
|
| 128 |
import re
|
| 129 |
-
|
| 130 |
import tensorflow as tf
|
| 131 |
except ImportError:
|
| 132 |
logger.error(
|
|
@@ -206,11 +203,7 @@ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
| 206 |
d = torch.from_numpy(array)
|
| 207 |
is_bias = len(shape) == 1
|
| 208 |
end = int(shape[0 if is_bias else 1] / 3)
|
| 209 |
-
m = dict(
|
| 210 |
-
query_layer=0,
|
| 211 |
-
key_layer=end,
|
| 212 |
-
value_layer=end * 2,
|
| 213 |
-
)
|
| 214 |
start = m[attn_layer]
|
| 215 |
end = start + end
|
| 216 |
if is_bias:
|
|
@@ -232,39 +225,54 @@ def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
|
| 232 |
return model
|
| 233 |
|
| 234 |
|
| 235 |
-
class
|
| 236 |
-
def __init__(self,
|
| 237 |
super().__init__()
|
| 238 |
|
| 239 |
-
|
| 240 |
-
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
|
| 241 |
-
assert n_state % config.n_head == 0
|
| 242 |
self.register_buffer(
|
| 243 |
"bias",
|
| 244 |
-
torch.tril(
|
| 245 |
-
|
| 246 |
-
),
|
| 247 |
)
|
| 248 |
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
| 249 |
-
|
| 250 |
-
self.
|
| 251 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
self.is_cross_attention = is_cross_attention
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
if self.is_cross_attention:
|
| 254 |
-
self.c_attn = Conv1D(2 *
|
| 255 |
-
self.q_attn = Conv1D(
|
| 256 |
else:
|
| 257 |
-
self.c_attn = Conv1D(3 *
|
| 258 |
-
self.c_proj = Conv1D(
|
|
|
|
| 259 |
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
| 260 |
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
|
|
|
| 261 |
self.pruned_heads = set()
|
| 262 |
|
| 263 |
def prune_heads(self, heads):
|
| 264 |
if len(heads) == 0:
|
| 265 |
return
|
| 266 |
heads, index = find_pruneable_heads_and_indices(
|
| 267 |
-
heads, self.
|
| 268 |
)
|
| 269 |
index_attn = torch.cat(
|
| 270 |
[index, index + self.split_size, index + (2 * self.split_size)]
|
|
@@ -275,67 +283,163 @@ class Attention(nn.Module):
|
|
| 275 |
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
| 276 |
|
| 277 |
# Update hyper params
|
| 278 |
-
self.split_size = (self.split_size // self.
|
| 279 |
-
|
|
|
|
|
|
|
| 280 |
self.pruned_heads = self.pruned_heads.union(heads)
|
| 281 |
|
| 282 |
-
def _attn(
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
|
|
|
|
|
|
| 289 |
|
| 290 |
if not self.is_cross_attention:
|
| 291 |
# if only "normal" attention layer implements causal mask
|
| 292 |
-
|
| 293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
|
| 295 |
if attention_mask is not None:
|
| 296 |
# Apply the attention mask
|
| 297 |
-
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
# Mask heads if we want to
|
| 303 |
if head_mask is not None:
|
| 304 |
-
|
| 305 |
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
else:
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
def forward(
|
| 325 |
self,
|
| 326 |
-
hidden_states,
|
| 327 |
-
layer_past=None,
|
| 328 |
-
attention_mask=None,
|
| 329 |
-
head_mask=None,
|
| 330 |
-
encoder_hidden_states=None,
|
| 331 |
-
encoder_attention_mask=None,
|
| 332 |
-
use_cache=False,
|
| 333 |
-
output_attentions=False,
|
| 334 |
-
):
|
| 335 |
if encoder_hidden_states is not None:
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
|
|
|
|
|
|
|
|
|
| 339 |
query = self.q_attn(hidden_states)
|
| 340 |
key, value = self.c_attn(encoder_hidden_states).split(
|
| 341 |
self.split_size, dim=2
|
|
@@ -344,80 +448,97 @@ class Attention(nn.Module):
|
|
| 344 |
else:
|
| 345 |
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
| 346 |
|
| 347 |
-
query = self.
|
| 348 |
-
key = self.
|
| 349 |
-
value = self.
|
|
|
|
| 350 |
if layer_past is not None:
|
| 351 |
-
past_key, past_value =
|
| 352 |
-
|
| 353 |
-
layer_past[1],
|
| 354 |
-
) # transpose back cf below
|
| 355 |
-
key = torch.cat((past_key, key), dim=-1)
|
| 356 |
value = torch.cat((past_value, value), dim=-2)
|
| 357 |
|
| 358 |
if use_cache is True:
|
| 359 |
-
present =
|
| 360 |
-
(key.transpose(-2, -1), value)
|
| 361 |
-
) # transpose to have same shapes for stacking
|
| 362 |
else:
|
| 363 |
-
present =
|
| 364 |
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
|
| 374 |
-
outputs = [a, present] + attn_outputs[1:]
|
| 375 |
return outputs # a, present, (attentions)
|
| 376 |
|
| 377 |
|
| 378 |
-
class
|
| 379 |
-
def __init__(self,
|
| 380 |
super().__init__()
|
| 381 |
-
|
| 382 |
-
self.c_fc = Conv1D(
|
| 383 |
-
self.c_proj = Conv1D(
|
| 384 |
self.act = ACT2FN[config.activation_function]
|
| 385 |
self.dropout = nn.Dropout(config.resid_pdrop)
|
| 386 |
|
| 387 |
-
def forward(
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
-
class
|
| 394 |
-
def __init__(self,
|
| 395 |
super().__init__()
|
| 396 |
-
hidden_size = config.
|
| 397 |
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
|
|
|
| 398 |
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 399 |
-
self.attn =
|
| 400 |
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
| 401 |
if config.add_cross_attention:
|
| 402 |
-
self.crossattention =
|
| 403 |
-
|
| 404 |
)
|
| 405 |
self.ln_cross_attn = nn.LayerNorm(
|
| 406 |
hidden_size, eps=config.layer_norm_epsilon
|
| 407 |
)
|
| 408 |
-
|
|
|
|
| 409 |
|
| 410 |
def forward(
|
| 411 |
self,
|
| 412 |
-
hidden_states,
|
| 413 |
-
layer_past=None,
|
| 414 |
-
attention_mask=None,
|
| 415 |
-
head_mask=None,
|
| 416 |
-
encoder_hidden_states=None,
|
| 417 |
-
encoder_attention_mask=None,
|
| 418 |
-
use_cache=False,
|
| 419 |
-
output_attentions=False,
|
| 420 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
attn_outputs = self.attn(
|
| 422 |
hidden_states,
|
| 423 |
layer_past=layer_past,
|
|
@@ -433,11 +554,16 @@ class Block(nn.Module):
|
|
| 433 |
|
| 434 |
if encoder_hidden_states is not None:
|
| 435 |
# add one self-attention block for cross-attention
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
cross_attn_outputs = self.crossattention(
|
| 440 |
-
|
| 441 |
attention_mask=attention_mask,
|
| 442 |
head_mask=head_mask,
|
| 443 |
encoder_hidden_states=encoder_hidden_states,
|
|
@@ -446,18 +572,24 @@ class Block(nn.Module):
|
|
| 446 |
)
|
| 447 |
attn_output = cross_attn_outputs[0]
|
| 448 |
# residual connection
|
| 449 |
-
hidden_states =
|
| 450 |
outputs = (
|
| 451 |
outputs + cross_attn_outputs[2:]
|
| 452 |
) # add cross attentions if we output attention weights
|
| 453 |
|
| 454 |
-
|
|
|
|
|
|
|
| 455 |
# residual connection
|
| 456 |
-
hidden_states =
|
| 457 |
|
| 458 |
-
hidden_states = self.ln_2(hidden_states)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
|
| 460 |
-
outputs = [hidden_states] + outputs
|
| 461 |
return outputs # hidden_states, present, (attentions, cross_attentions)
|
| 462 |
|
| 463 |
|
|
@@ -471,22 +603,48 @@ class GPT2PreTrainedModel(PreTrainedModel):
|
|
| 471 |
load_tf_weights = load_tf_weights_in_gpt2
|
| 472 |
base_model_prefix = "transformer"
|
| 473 |
is_parallelizable = True
|
|
|
|
| 474 |
|
| 475 |
def __init__(self, *inputs, **kwargs):
|
| 476 |
super().__init__(*inputs, **kwargs)
|
| 477 |
|
| 478 |
def _init_weights(self, module):
|
| 479 |
"""Initialize the weights."""
|
| 480 |
-
if isinstance(module, (nn.Linear,
|
| 481 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 482 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 483 |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 484 |
-
if
|
| 485 |
module.bias.data.zero_()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
elif isinstance(module, nn.LayerNorm):
|
| 487 |
module.bias.data.zero_()
|
| 488 |
module.weight.data.fill_(1.0)
|
| 489 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
|
| 491 |
@dataclass
|
| 492 |
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
|
@@ -494,125 +652,125 @@ class GPT2DoubleHeadsModelOutput(ModelOutput):
|
|
| 494 |
Base class for outputs of models predicting if two sentences are consecutive or not.
|
| 495 |
|
| 496 |
Args:
|
| 497 |
-
loss (
|
| 498 |
Language modeling loss.
|
| 499 |
-
mc_loss (
|
| 500 |
Multiple choice classification loss.
|
| 501 |
-
logits (
|
| 502 |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 503 |
-
mc_logits (
|
| 504 |
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
| 505 |
-
past_key_values (
|
| 506 |
-
|
| 507 |
-
|
| 508 |
|
| 509 |
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
| 510 |
-
|
| 511 |
-
hidden_states (
|
| 512 |
-
Tuple of
|
| 513 |
-
|
| 514 |
|
| 515 |
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
| 516 |
-
attentions (
|
| 517 |
-
Tuple of
|
| 518 |
-
sequence_length
|
| 519 |
|
| 520 |
-
|
| 521 |
-
heads.
|
| 522 |
"""
|
| 523 |
|
| 524 |
loss: Optional[torch.FloatTensor] = None
|
| 525 |
mc_loss: Optional[torch.FloatTensor] = None
|
| 526 |
logits: torch.FloatTensor = None
|
| 527 |
mc_logits: torch.FloatTensor = None
|
| 528 |
-
past_key_values: Optional[
|
| 529 |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 530 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 531 |
|
| 532 |
|
| 533 |
GPT2_START_DOCSTRING = r"""
|
| 534 |
|
| 535 |
-
This model inherits from
|
| 536 |
-
|
| 537 |
-
|
| 538 |
|
| 539 |
-
This model is also a PyTorch
|
| 540 |
-
|
| 541 |
-
|
| 542 |
|
| 543 |
Parameters:
|
| 544 |
-
config (
|
| 545 |
Initializing with a config file does not load the weights associated with the model, only the
|
| 546 |
-
configuration. Check out the
|
| 547 |
-
weights.
|
| 548 |
"""
|
| 549 |
|
| 550 |
GPT2_INPUTS_DOCSTRING = r"""
|
| 551 |
Args:
|
| 552 |
-
input_ids (
|
| 553 |
-
|
| 554 |
-
|
| 555 |
sequence tokens in the vocabulary.
|
| 556 |
|
| 557 |
-
If
|
| 558 |
-
|
| 559 |
|
| 560 |
-
Indices can be obtained using
|
| 561 |
-
|
| 562 |
-
details.
|
| 563 |
|
| 564 |
-
|
| 565 |
-
past_key_values (
|
| 566 |
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
| 572 |
|
| 573 |
- 1 for tokens that are **not masked**,
|
| 574 |
- 0 for tokens that are **masked**.
|
| 575 |
|
| 576 |
-
`
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
1]``:
|
| 580 |
|
| 581 |
-
|
| 582 |
-
|
|
|
|
|
|
|
| 583 |
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
| 587 |
-
config.max_position_embeddings - 1]``.
|
| 588 |
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 592 |
|
| 593 |
- 1 indicates the head is **not masked**,
|
| 594 |
- 0 indicates the head is **masked**.
|
| 595 |
|
| 596 |
-
inputs_embeds (
|
| 597 |
-
Optionally, instead of passing
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
If
|
| 602 |
-
|
| 603 |
-
use_cache (
|
| 604 |
-
If set to
|
| 605 |
-
|
| 606 |
-
output_attentions (
|
| 607 |
-
Whether or not to return the attentions tensors of all attention layers. See
|
| 608 |
tensors for more detail.
|
| 609 |
-
output_hidden_states (
|
| 610 |
-
Whether or not to return the hidden states of all layers. See
|
| 611 |
more detail.
|
| 612 |
-
return_dict (
|
| 613 |
-
Whether or not to return a
|
| 614 |
"""
|
| 615 |
-
|
| 616 |
PARALLELIZE_DOCSTRING = r"""
|
| 617 |
This is an experimental feature and is a subject to change at a moment's notice.
|
| 618 |
|
|
@@ -620,7 +778,7 @@ PARALLELIZE_DOCSTRING = r"""
|
|
| 620 |
it will evenly distribute blocks across all devices.
|
| 621 |
|
| 622 |
Args:
|
| 623 |
-
device_map (
|
| 624 |
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
| 625 |
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
| 626 |
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
|
|
@@ -631,31 +789,37 @@ PARALLELIZE_DOCSTRING = r"""
|
|
| 631 |
- gpt2-large: 36
|
| 632 |
- gpt2-xl: 48
|
| 633 |
|
| 634 |
-
Example
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
|
|
|
|
|
|
|
|
|
| 644 |
"""
|
| 645 |
DEPARALLELIZE_DOCSTRING = r"""
|
| 646 |
Moves the model to cpu from a model parallel state.
|
| 647 |
|
| 648 |
-
Example
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
|
|
|
|
|
|
|
|
|
| 659 |
"""
|
| 660 |
|
| 661 |
|
|
@@ -664,26 +828,32 @@ DEPARALLELIZE_DOCSTRING = r"""
|
|
| 664 |
GPT2_START_DOCSTRING,
|
| 665 |
)
|
| 666 |
class GPT2Model(GPT2PreTrainedModel):
|
|
|
|
|
|
|
| 667 |
def __init__(self, config):
|
| 668 |
super().__init__(config)
|
| 669 |
|
| 670 |
-
self.
|
| 671 |
-
self.wpe = nn.Embedding(config.n_positions, config.n_embd)
|
| 672 |
-
if _USE_GROVER:
|
| 673 |
-
self.emb_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
| 674 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 675 |
self.drop = nn.Dropout(config.embd_pdrop)
|
| 676 |
self.h = nn.ModuleList(
|
| 677 |
-
[
|
| 678 |
)
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
self.init_weights()
|
| 683 |
|
| 684 |
# Model parallel
|
| 685 |
self.model_parallel = False
|
| 686 |
self.device_map = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 687 |
|
| 688 |
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 689 |
def parallelize(self, device_map=None):
|
|
@@ -703,13 +873,22 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 703 |
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
| 704 |
self.wte = self.wte.to(self.first_device)
|
| 705 |
self.wpe = self.wpe.to(self.first_device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 706 |
# Load onto devices
|
| 707 |
for k, v in self.device_map.items():
|
| 708 |
for block in v:
|
| 709 |
cuda_device = "cuda:" + str(k)
|
| 710 |
self.h[block] = self.h[block].to(cuda_device)
|
| 711 |
# ln_f to last
|
| 712 |
-
|
|
|
|
| 713 |
|
| 714 |
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
| 715 |
def deparallelize(self):
|
|
@@ -719,9 +898,12 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 719 |
self.last_device = "cpu"
|
| 720 |
self.wte = self.wte.to("cpu")
|
| 721 |
self.wpe = self.wpe.to("cpu")
|
|
|
|
|
|
|
| 722 |
for index in range(len(self.h)):
|
| 723 |
self.h[index] = self.h[index].to("cpu")
|
| 724 |
-
|
|
|
|
| 725 |
torch.cuda.empty_cache()
|
| 726 |
|
| 727 |
def get_input_embeddings(self):
|
|
@@ -739,27 +921,27 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 739 |
|
| 740 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 741 |
@add_code_sample_docstrings(
|
| 742 |
-
|
| 743 |
-
checkpoint=
|
| 744 |
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
| 745 |
config_class=_CONFIG_FOR_DOC,
|
| 746 |
)
|
| 747 |
def forward(
|
| 748 |
self,
|
| 749 |
-
input_ids=None,
|
| 750 |
-
past_key_values=None,
|
| 751 |
-
attention_mask=None,
|
| 752 |
-
token_type_ids=None,
|
| 753 |
-
position_ids=None,
|
| 754 |
-
head_mask=None,
|
| 755 |
-
inputs_embeds=None,
|
| 756 |
-
encoder_hidden_states=None,
|
| 757 |
-
encoder_attention_mask=None,
|
| 758 |
-
use_cache=None,
|
| 759 |
-
output_attentions=None,
|
| 760 |
-
output_hidden_states=None,
|
| 761 |
-
return_dict=None,
|
| 762 |
-
):
|
| 763 |
output_attentions = (
|
| 764 |
output_attentions
|
| 765 |
if output_attentions is not None
|
|
@@ -789,6 +971,8 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 789 |
else:
|
| 790 |
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 791 |
|
|
|
|
|
|
|
| 792 |
if token_type_ids is not None:
|
| 793 |
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 794 |
if position_ids is not None:
|
|
@@ -796,11 +980,10 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 796 |
|
| 797 |
if past_key_values is None:
|
| 798 |
past_length = 0
|
| 799 |
-
past_key_values = [None] * len(self.h)
|
| 800 |
else:
|
| 801 |
past_length = past_key_values[0][0].size(-2)
|
| 802 |
if position_ids is None:
|
| 803 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 804 |
position_ids = torch.arange(
|
| 805 |
past_length,
|
| 806 |
input_shape[-1] + past_length,
|
|
@@ -809,7 +992,7 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 809 |
)
|
| 810 |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
| 811 |
|
| 812 |
-
#
|
| 813 |
if attention_mask is not None:
|
| 814 |
if batch_size <= 0:
|
| 815 |
raise ValueError("batch_size has to be defined and > 0")
|
|
@@ -829,7 +1012,7 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 829 |
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 830 |
attention_mask = (1.0 - attention_mask) * -10000.0
|
| 831 |
|
| 832 |
-
# If a 2D
|
| 833 |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 834 |
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 835 |
(
|
|
@@ -860,8 +1043,9 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 860 |
hidden_states = hidden_states + token_type_embeds
|
| 861 |
|
| 862 |
hidden_states = self.drop(hidden_states)
|
| 863 |
-
|
| 864 |
-
|
|
|
|
| 865 |
output_shape = input_shape + (hidden_states.size(-1),)
|
| 866 |
|
| 867 |
presents = () if use_cache else None
|
|
@@ -885,28 +1069,28 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 885 |
attention_mask = attention_mask.to(hidden_states.device)
|
| 886 |
if isinstance(head_mask, torch.Tensor):
|
| 887 |
head_mask = head_mask.to(hidden_states.device)
|
| 888 |
-
|
| 889 |
if output_hidden_states:
|
| 890 |
-
all_hidden_states = all_hidden_states + (
|
| 891 |
-
hidden_states.view(*output_shape),
|
| 892 |
-
)
|
| 893 |
|
| 894 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 895 |
|
| 896 |
def create_custom_forward(module):
|
| 897 |
def custom_forward(*inputs):
|
| 898 |
-
#
|
| 899 |
-
return
|
| 900 |
-
output
|
| 901 |
-
for output in module(*inputs, use_cache, output_attentions)
|
| 902 |
-
)
|
| 903 |
|
| 904 |
return custom_forward
|
| 905 |
|
| 906 |
outputs = torch.utils.checkpoint.checkpoint(
|
| 907 |
create_custom_forward(block),
|
| 908 |
hidden_states,
|
| 909 |
-
|
| 910 |
attention_mask,
|
| 911 |
head_mask[i],
|
| 912 |
encoder_hidden_states,
|
|
@@ -924,9 +1108,9 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 924 |
output_attentions=output_attentions,
|
| 925 |
)
|
| 926 |
|
| 927 |
-
hidden_states
|
| 928 |
if use_cache is True:
|
| 929 |
-
presents = presents + (
|
| 930 |
|
| 931 |
if output_attentions:
|
| 932 |
all_self_attentions = all_self_attentions + (
|
|
@@ -943,10 +1127,10 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 943 |
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 944 |
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 945 |
|
| 946 |
-
|
| 947 |
-
|
| 948 |
|
| 949 |
-
hidden_states = hidden_states.view(
|
| 950 |
# Add last hidden state
|
| 951 |
if output_hidden_states:
|
| 952 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
@@ -981,19 +1165,24 @@ class GPT2Model(GPT2PreTrainedModel):
|
|
| 981 |
GPT2_START_DOCSTRING,
|
| 982 |
)
|
| 983 |
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
| 984 |
-
_keys_to_ignore_on_load_missing = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 985 |
|
| 986 |
def __init__(self, config):
|
| 987 |
super().__init__(config)
|
| 988 |
self.transformer = GPT2Model(config)
|
| 989 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 990 |
|
| 991 |
-
self.init_weights()
|
| 992 |
-
|
| 993 |
# Model parallel
|
| 994 |
self.model_parallel = False
|
| 995 |
self.device_map = None
|
| 996 |
|
|
|
|
|
|
|
|
|
|
| 997 |
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 998 |
def parallelize(self, device_map=None):
|
| 999 |
self.device_map = (
|
|
@@ -1017,6 +1206,9 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
| 1017 |
def get_output_embeddings(self):
|
| 1018 |
return self.lm_head
|
| 1019 |
|
|
|
|
|
|
|
|
|
|
| 1020 |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 1021 |
token_type_ids = kwargs.get("token_type_ids", None)
|
| 1022 |
# only last token for inputs_ids if past is defined in kwargs
|
|
@@ -1047,33 +1239,33 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
| 1047 |
|
| 1048 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1049 |
@add_code_sample_docstrings(
|
| 1050 |
-
|
| 1051 |
-
checkpoint=
|
| 1052 |
output_type=CausalLMOutputWithCrossAttentions,
|
| 1053 |
config_class=_CONFIG_FOR_DOC,
|
| 1054 |
)
|
| 1055 |
def forward(
|
| 1056 |
self,
|
| 1057 |
-
input_ids=None,
|
| 1058 |
-
past_key_values=None,
|
| 1059 |
-
attention_mask=None,
|
| 1060 |
-
token_type_ids=None,
|
| 1061 |
-
position_ids=None,
|
| 1062 |
-
head_mask=None,
|
| 1063 |
-
inputs_embeds=None,
|
| 1064 |
-
encoder_hidden_states=None,
|
| 1065 |
-
encoder_attention_mask=None,
|
| 1066 |
-
labels=None,
|
| 1067 |
-
use_cache=None,
|
| 1068 |
-
output_attentions=None,
|
| 1069 |
-
output_hidden_states=None,
|
| 1070 |
-
return_dict=None,
|
| 1071 |
-
):
|
| 1072 |
r"""
|
| 1073 |
-
labels (
|
| 1074 |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1075 |
-
|
| 1076 |
-
|
| 1077 |
"""
|
| 1078 |
return_dict = (
|
| 1079 |
return_dict if return_dict is not None else self.config.use_return_dict
|
|
@@ -1132,9 +1324,9 @@ class GPT2LMHeadModel(GPT2PreTrainedModel):
|
|
| 1132 |
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1133 |
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1134 |
"""
|
| 1135 |
-
This function is used to re-order the
|
| 1136 |
-
|
| 1137 |
-
|
| 1138 |
"""
|
| 1139 |
return tuple(
|
| 1140 |
tuple(
|
|
@@ -1155,6 +1347,12 @@ input sequence).
|
|
| 1155 |
GPT2_START_DOCSTRING,
|
| 1156 |
)
|
| 1157 |
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1158 |
def __init__(self, config):
|
| 1159 |
super().__init__(config)
|
| 1160 |
config.num_labels = 1
|
|
@@ -1162,12 +1360,13 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 1162 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 1163 |
self.multiple_choice_head = SequenceSummary(config)
|
| 1164 |
|
| 1165 |
-
self.init_weights()
|
| 1166 |
-
|
| 1167 |
# Model parallel
|
| 1168 |
self.model_parallel = False
|
| 1169 |
self.device_map = None
|
| 1170 |
|
|
|
|
|
|
|
|
|
|
| 1171 |
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 1172 |
def parallelize(self, device_map=None):
|
| 1173 |
self.device_map = (
|
|
@@ -1195,6 +1394,9 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 1195 |
def get_output_embeddings(self):
|
| 1196 |
return self.lm_head
|
| 1197 |
|
|
|
|
|
|
|
|
|
|
| 1198 |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 1199 |
token_type_ids = kwargs.get("token_type_ids", None)
|
| 1200 |
# only last token for inputs_ids if past is defined in kwargs
|
|
@@ -1230,62 +1432,61 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 1230 |
)
|
| 1231 |
def forward(
|
| 1232 |
self,
|
| 1233 |
-
input_ids=None,
|
| 1234 |
-
past_key_values=None,
|
| 1235 |
-
attention_mask=None,
|
| 1236 |
-
token_type_ids=None,
|
| 1237 |
-
position_ids=None,
|
| 1238 |
-
head_mask=None,
|
| 1239 |
-
inputs_embeds=None,
|
| 1240 |
-
mc_token_ids=None,
|
| 1241 |
-
labels=None,
|
| 1242 |
-
mc_labels=None,
|
| 1243 |
-
use_cache=None,
|
| 1244 |
-
output_attentions=None,
|
| 1245 |
-
output_hidden_states=None,
|
| 1246 |
-
return_dict=None,
|
| 1247 |
**kwargs,
|
| 1248 |
-
):
|
| 1249 |
r"""
|
| 1250 |
-
mc_token_ids (
|
| 1251 |
-
Index of the classification token in each input sequence. Selected in the range
|
| 1252 |
-
1[
|
| 1253 |
-
labels (
|
| 1254 |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1255 |
-
|
| 1256 |
-
|
| 1257 |
-
mc_labels (
|
| 1258 |
-
Labels for computing the multiple choice classification loss. Indices should be in
|
| 1259 |
-
|
| 1260 |
-
`input_ids` above)
|
| 1261 |
|
| 1262 |
Return:
|
| 1263 |
|
| 1264 |
-
Example
|
| 1265 |
-
|
| 1266 |
-
>>> import torch
|
| 1267 |
-
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
|
| 1268 |
-
|
| 1269 |
-
>>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 1270 |
-
>>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
|
| 1271 |
|
| 1272 |
-
|
| 1273 |
-
|
|
|
|
| 1274 |
|
| 1275 |
-
|
|
|
|
| 1276 |
|
| 1277 |
-
|
| 1278 |
-
|
| 1279 |
-
|
|
|
|
| 1280 |
|
| 1281 |
-
|
| 1282 |
-
|
|
|
|
| 1283 |
|
| 1284 |
-
|
| 1285 |
-
|
| 1286 |
-
>>> mc_logits = outputs.mc_logits
|
| 1287 |
|
| 1288 |
-
|
|
|
|
|
|
|
|
|
|
| 1289 |
return_dict = (
|
| 1290 |
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1291 |
)
|
|
@@ -1350,9 +1551,9 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 1350 |
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1351 |
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1352 |
"""
|
| 1353 |
-
This function is used to re-order the
|
| 1354 |
-
|
| 1355 |
-
|
| 1356 |
"""
|
| 1357 |
return tuple(
|
| 1358 |
tuple(
|
|
@@ -1367,14 +1568,14 @@ class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
|
| 1367 |
"""
|
| 1368 |
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
| 1369 |
|
| 1370 |
-
|
| 1371 |
-
|
| 1372 |
|
| 1373 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1374 |
-
|
| 1375 |
-
|
| 1376 |
-
|
| 1377 |
-
|
| 1378 |
""",
|
| 1379 |
GPT2_START_DOCSTRING,
|
| 1380 |
)
|
|
@@ -1387,39 +1588,42 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1387 |
self.transformer = GPT2Model(config)
|
| 1388 |
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
| 1389 |
|
| 1390 |
-
self.init_weights()
|
| 1391 |
-
|
| 1392 |
# Model parallel
|
| 1393 |
self.model_parallel = False
|
| 1394 |
self.device_map = None
|
| 1395 |
|
|
|
|
|
|
|
|
|
|
| 1396 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1397 |
@add_code_sample_docstrings(
|
| 1398 |
-
|
| 1399 |
-
checkpoint="microsoft/
|
| 1400 |
output_type=SequenceClassifierOutputWithPast,
|
| 1401 |
config_class=_CONFIG_FOR_DOC,
|
|
|
|
|
|
|
| 1402 |
)
|
| 1403 |
def forward(
|
| 1404 |
self,
|
| 1405 |
-
input_ids=None,
|
| 1406 |
-
past_key_values=None,
|
| 1407 |
-
attention_mask=None,
|
| 1408 |
-
token_type_ids=None,
|
| 1409 |
-
position_ids=None,
|
| 1410 |
-
head_mask=None,
|
| 1411 |
-
inputs_embeds=None,
|
| 1412 |
-
labels=None,
|
| 1413 |
-
use_cache=None,
|
| 1414 |
-
output_attentions=None,
|
| 1415 |
-
output_hidden_states=None,
|
| 1416 |
-
return_dict=None,
|
| 1417 |
-
):
|
| 1418 |
r"""
|
| 1419 |
-
labels (
|
| 1420 |
-
Labels for computing the sequence classification/regression loss. Indices should be in
|
| 1421 |
-
config.num_labels - 1]`. If
|
| 1422 |
-
|
| 1423 |
"""
|
| 1424 |
return_dict = (
|
| 1425 |
return_dict if return_dict is not None else self.config.use_return_dict
|
|
@@ -1460,23 +1664,39 @@ class GPT2ForSequenceClassification(GPT2PreTrainedModel):
|
|
| 1460 |
sequence_lengths = -1
|
| 1461 |
logger.warning(
|
| 1462 |
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1463 |
-
|
| 1464 |
)
|
| 1465 |
|
| 1466 |
-
pooled_logits = logits[
|
|
|
|
|
|
|
| 1467 |
|
| 1468 |
loss = None
|
| 1469 |
if labels is not None:
|
| 1470 |
-
if self.
|
| 1471 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1472 |
loss_fct = MSELoss()
|
| 1473 |
-
|
| 1474 |
-
|
|
|
|
|
|
|
|
|
|
| 1475 |
loss_fct = CrossEntropyLoss()
|
| 1476 |
loss = loss_fct(
|
| 1477 |
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1478 |
)
|
| 1479 |
-
|
|
|
|
|
|
|
| 1480 |
if not return_dict:
|
| 1481 |
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1482 |
return ((loss,) + output) if loss is not None else output
|
|
@@ -1515,39 +1735,44 @@ class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
|
| 1515 |
self.dropout = nn.Dropout(classifier_dropout)
|
| 1516 |
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1517 |
|
| 1518 |
-
self.init_weights()
|
| 1519 |
-
|
| 1520 |
# Model parallel
|
| 1521 |
self.model_parallel = False
|
| 1522 |
self.device_map = None
|
| 1523 |
|
|
|
|
|
|
|
|
|
|
| 1524 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
|
|
|
| 1525 |
@add_code_sample_docstrings(
|
| 1526 |
-
|
| 1527 |
-
checkpoint="
|
| 1528 |
output_type=TokenClassifierOutput,
|
| 1529 |
config_class=_CONFIG_FOR_DOC,
|
|
|
|
|
|
|
| 1530 |
)
|
|
|
|
| 1531 |
def forward(
|
| 1532 |
self,
|
| 1533 |
-
input_ids=None,
|
| 1534 |
-
past_key_values=None,
|
| 1535 |
-
attention_mask=None,
|
| 1536 |
-
token_type_ids=None,
|
| 1537 |
-
position_ids=None,
|
| 1538 |
-
head_mask=None,
|
| 1539 |
-
inputs_embeds=None,
|
| 1540 |
-
labels=None,
|
| 1541 |
-
use_cache=None,
|
| 1542 |
-
output_attentions=None,
|
| 1543 |
-
output_hidden_states=None,
|
| 1544 |
-
return_dict=None,
|
| 1545 |
-
):
|
| 1546 |
r"""
|
| 1547 |
-
labels (
|
| 1548 |
-
Labels for computing the sequence classification/regression loss. Indices should be in
|
| 1549 |
-
config.num_labels - 1]`. If
|
| 1550 |
-
|
| 1551 |
"""
|
| 1552 |
return_dict = (
|
| 1553 |
return_dict if return_dict is not None else self.config.use_return_dict
|
|
@@ -1574,18 +1799,7 @@ class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
|
| 1574 |
loss = None
|
| 1575 |
if labels is not None:
|
| 1576 |
loss_fct = CrossEntropyLoss()
|
| 1577 |
-
|
| 1578 |
-
if attention_mask is not None:
|
| 1579 |
-
active_loss = attention_mask.view(-1) == 1
|
| 1580 |
-
active_logits = logits.view(-1, self.num_labels)
|
| 1581 |
-
active_labels = torch.where(
|
| 1582 |
-
active_loss,
|
| 1583 |
-
labels.view(-1),
|
| 1584 |
-
torch.tensor(loss_fct.ignore_index).type_as(labels),
|
| 1585 |
-
)
|
| 1586 |
-
loss = loss_fct(active_logits, active_labels)
|
| 1587 |
-
else:
|
| 1588 |
-
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1589 |
|
| 1590 |
if not return_dict:
|
| 1591 |
output = (logits,) + transformer_outputs[2:]
|
|
@@ -1596,4 +1810,4 @@ class GPT2ForTokenClassification(GPT2PreTrainedModel):
|
|
| 1596 |
logits=logits,
|
| 1597 |
hidden_states=transformer_outputs.hidden_states,
|
| 1598 |
attentions=transformer_outputs.attentions,
|
| 1599 |
-
)
|
|
|
|
| 13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
| 16 |
+
"""PyTorch GROVER model."""
|
| 17 |
|
| 18 |
+
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
import os
|
| 20 |
from dataclasses import dataclass
|
| 21 |
+
from typing import Optional, Tuple, Union
|
| 22 |
|
| 23 |
import torch
|
| 24 |
+
import torch.utils.checkpoint
|
| 25 |
+
from packaging import version
|
| 26 |
+
from torch import nn
|
| 27 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
if version.parse(torch.__version__) >= version.parse("1.6"):
|
| 31 |
+
is_amp_available = True
|
| 32 |
+
from torch.cuda.amp import autocast
|
| 33 |
+
else:
|
| 34 |
+
is_amp_available = False
|
| 35 |
+
|
| 36 |
from transformers.activations import ACT2FN
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
from transformers.modeling_outputs import (
|
| 38 |
BaseModelOutputWithPastAndCrossAttentions,
|
| 39 |
CausalLMOutputWithCrossAttentions,
|
| 40 |
SequenceClassifierOutputWithPast,
|
| 41 |
TokenClassifierOutput,
|
| 42 |
)
|
| 43 |
+
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
|
| 44 |
+
from transformers.pytorch_utils import (
|
| 45 |
Conv1D,
|
|
|
|
|
|
|
| 46 |
find_pruneable_heads_and_indices,
|
| 47 |
prune_conv1d_layer,
|
| 48 |
)
|
| 49 |
+
from transformers.utils import (
|
| 50 |
+
ModelOutput,
|
| 51 |
+
add_code_sample_docstrings,
|
| 52 |
+
add_start_docstrings,
|
| 53 |
+
add_start_docstrings_to_model_forward,
|
| 54 |
+
logging,
|
| 55 |
+
replace_return_docstrings,
|
| 56 |
+
)
|
| 57 |
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 58 |
+
from transformers import GPT2Config
|
| 59 |
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
logger = logging.get_logger(__name__)
|
| 62 |
|
| 63 |
+
_CHECKPOINT_FOR_DOC = "gpt2"
|
| 64 |
_CONFIG_FOR_DOC = "GPT2Config"
|
| 65 |
_TOKENIZER_FOR_DOC = "GPT2Tokenizer"
|
| 66 |
|
|
|
|
| 73 |
# See all GPT-2 models at https://huggingface.co/models?filter=gpt2
|
| 74 |
]
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
_GPT2_ML_TF_TO_TORCH = {
|
| 77 |
"LayerNorm_embed_norm": "emb_norm",
|
| 78 |
"pos_embed": "wpe.weight",
|
|
|
|
| 124 |
"""Load tf checkpoints in a pytorch model"""
|
| 125 |
try:
|
| 126 |
import re
|
|
|
|
| 127 |
import tensorflow as tf
|
| 128 |
except ImportError:
|
| 129 |
logger.error(
|
|
|
|
| 203 |
d = torch.from_numpy(array)
|
| 204 |
is_bias = len(shape) == 1
|
| 205 |
end = int(shape[0 if is_bias else 1] / 3)
|
| 206 |
+
m = dict(query_layer=0, key_layer=end, value_layer=end * 2,)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
start = m[attn_layer]
|
| 208 |
end = start + end
|
| 209 |
if is_bias:
|
|
|
|
| 225 |
return model
|
| 226 |
|
| 227 |
|
| 228 |
+
class GPT2Attention(nn.Module):
|
| 229 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
| 230 |
super().__init__()
|
| 231 |
|
| 232 |
+
max_positions = config.max_position_embeddings
|
|
|
|
|
|
|
| 233 |
self.register_buffer(
|
| 234 |
"bias",
|
| 235 |
+
torch.tril(
|
| 236 |
+
torch.ones((max_positions, max_positions), dtype=torch.uint8)
|
| 237 |
+
).view(1, 1, max_positions, max_positions),
|
| 238 |
)
|
| 239 |
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
| 240 |
+
|
| 241 |
+
self.embed_dim = config.hidden_size
|
| 242 |
+
self.num_heads = config.num_attention_heads
|
| 243 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 244 |
+
self.split_size = self.embed_dim
|
| 245 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 246 |
+
raise ValueError(
|
| 247 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 248 |
+
f" {self.num_heads})."
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
self.scale_attn_weights = config.scale_attn_weights
|
| 252 |
self.is_cross_attention = is_cross_attention
|
| 253 |
+
|
| 254 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
| 255 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
| 256 |
+
self.layer_idx = layer_idx
|
| 257 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
| 258 |
+
|
| 259 |
if self.is_cross_attention:
|
| 260 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
| 261 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
| 262 |
else:
|
| 263 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
| 264 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
| 265 |
+
|
| 266 |
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
| 267 |
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 268 |
+
|
| 269 |
self.pruned_heads = set()
|
| 270 |
|
| 271 |
def prune_heads(self, heads):
|
| 272 |
if len(heads) == 0:
|
| 273 |
return
|
| 274 |
heads, index = find_pruneable_heads_and_indices(
|
| 275 |
+
heads, self.num_heads, self.head_dim, self.pruned_heads
|
| 276 |
)
|
| 277 |
index_attn = torch.cat(
|
| 278 |
[index, index + self.split_size, index + (2 * self.split_size)]
|
|
|
|
| 283 |
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
| 284 |
|
| 285 |
# Update hyper params
|
| 286 |
+
self.split_size = (self.split_size // self.num_heads) * (
|
| 287 |
+
self.num_heads - len(heads)
|
| 288 |
+
)
|
| 289 |
+
self.num_heads = self.num_heads - len(heads)
|
| 290 |
self.pruned_heads = self.pruned_heads.union(heads)
|
| 291 |
|
| 292 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
| 293 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
| 294 |
+
|
| 295 |
+
if self.scale_attn_weights:
|
| 296 |
+
attn_weights = attn_weights / (value.size(-1) ** 0.5)
|
| 297 |
+
|
| 298 |
+
# Layer-wise attention scaling
|
| 299 |
+
if self.scale_attn_by_inverse_layer_idx:
|
| 300 |
+
attn_weights = attn_weights / float(self.layer_idx + 1)
|
| 301 |
|
| 302 |
if not self.is_cross_attention:
|
| 303 |
# if only "normal" attention layer implements causal mask
|
| 304 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 305 |
+
causal_mask = self.bias[
|
| 306 |
+
:, :, key_length - query_length : key_length, :key_length
|
| 307 |
+
].bool()
|
| 308 |
+
attn_weights = torch.where(
|
| 309 |
+
causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype)
|
| 310 |
+
)
|
| 311 |
|
| 312 |
if attention_mask is not None:
|
| 313 |
# Apply the attention mask
|
| 314 |
+
attn_weights = attn_weights + attention_mask
|
| 315 |
|
| 316 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 317 |
+
|
| 318 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
| 319 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 320 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 321 |
|
| 322 |
# Mask heads if we want to
|
| 323 |
if head_mask is not None:
|
| 324 |
+
attn_weights = attn_weights * head_mask
|
| 325 |
|
| 326 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 327 |
+
|
| 328 |
+
return attn_output, attn_weights
|
| 329 |
+
|
| 330 |
+
def _upcast_and_reordered_attn(
|
| 331 |
+
self, query, key, value, attention_mask=None, head_mask=None
|
| 332 |
+
):
|
| 333 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
| 334 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
| 335 |
+
_, _, k_seq_len, _ = key.size()
|
| 336 |
+
|
| 337 |
+
# Preallocate attn_weights for `baddbmm`
|
| 338 |
+
attn_weights = torch.empty(
|
| 339 |
+
bsz * num_heads,
|
| 340 |
+
q_seq_len,
|
| 341 |
+
k_seq_len,
|
| 342 |
+
dtype=torch.float32,
|
| 343 |
+
device=query.device,
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
# Compute Scale Factor
|
| 347 |
+
scale_factor = 1.0
|
| 348 |
+
if self.scale_attn_weights:
|
| 349 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
| 350 |
+
|
| 351 |
+
if self.scale_attn_by_inverse_layer_idx:
|
| 352 |
+
scale_factor /= float(self.layer_idx + 1)
|
| 353 |
+
|
| 354 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
| 355 |
+
if is_amp_available:
|
| 356 |
+
with autocast(enabled=False):
|
| 357 |
+
q, k = (
|
| 358 |
+
query.reshape(-1, q_seq_len, dk),
|
| 359 |
+
key.transpose(-1, -2).reshape(-1, dk, k_seq_len),
|
| 360 |
+
)
|
| 361 |
+
attn_weights = torch.baddbmm(
|
| 362 |
+
attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
|
| 363 |
+
)
|
| 364 |
+
attn_weights = attn_weights.reshape(
|
| 365 |
+
bsz, num_heads, q_seq_len, k_seq_len
|
| 366 |
+
)
|
| 367 |
else:
|
| 368 |
+
q, k = (
|
| 369 |
+
query.reshape(-1, q_seq_len, dk),
|
| 370 |
+
key.transpose(-1, -2).reshape(-1, dk, k_seq_len),
|
| 371 |
+
)
|
| 372 |
+
attn_weights = torch.baddbmm(
|
| 373 |
+
attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
|
| 374 |
+
)
|
| 375 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
| 376 |
+
|
| 377 |
+
if not self.is_cross_attention:
|
| 378 |
+
# if only "normal" attention layer implements causal mask
|
| 379 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 380 |
+
causal_mask = self.bias[
|
| 381 |
+
:, :, key_length - query_length : key_length, :key_length
|
| 382 |
+
].bool()
|
| 383 |
+
attn_weights = torch.where(
|
| 384 |
+
causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype)
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
if attention_mask is not None:
|
| 388 |
+
# Apply the attention mask
|
| 389 |
+
attn_weights = attn_weights + attention_mask
|
| 390 |
+
|
| 391 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 392 |
+
|
| 393 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
| 394 |
+
if attn_weights.dtype != torch.float32:
|
| 395 |
+
raise RuntimeError(
|
| 396 |
+
"Error with upcasting, attn_weights does not have dtype torch.float32"
|
| 397 |
+
)
|
| 398 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 399 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 400 |
+
|
| 401 |
+
# Mask heads if we want to
|
| 402 |
+
if head_mask is not None:
|
| 403 |
+
attn_weights = attn_weights * head_mask
|
| 404 |
+
|
| 405 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 406 |
+
|
| 407 |
+
return attn_output, attn_weights
|
| 408 |
+
|
| 409 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
| 410 |
+
"""
|
| 411 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
| 412 |
+
"""
|
| 413 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
| 414 |
+
tensor = tensor.view(new_shape)
|
| 415 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
| 416 |
+
|
| 417 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
| 418 |
+
"""
|
| 419 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
| 420 |
+
"""
|
| 421 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
| 422 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
| 423 |
+
return tensor.view(new_shape)
|
| 424 |
|
| 425 |
def forward(
|
| 426 |
self,
|
| 427 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 428 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 429 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 430 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 431 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 432 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 433 |
+
use_cache: Optional[bool] = False,
|
| 434 |
+
output_attentions: Optional[bool] = False,
|
| 435 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 436 |
if encoder_hidden_states is not None:
|
| 437 |
+
if not hasattr(self, "q_attn"):
|
| 438 |
+
raise ValueError(
|
| 439 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
| 440 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
query = self.q_attn(hidden_states)
|
| 444 |
key, value = self.c_attn(encoder_hidden_states).split(
|
| 445 |
self.split_size, dim=2
|
|
|
|
| 448 |
else:
|
| 449 |
query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
| 450 |
|
| 451 |
+
query = self._split_heads(query, self.num_heads, self.head_dim)
|
| 452 |
+
key = self._split_heads(key, self.num_heads, self.head_dim)
|
| 453 |
+
value = self._split_heads(value, self.num_heads, self.head_dim)
|
| 454 |
+
|
| 455 |
if layer_past is not None:
|
| 456 |
+
past_key, past_value = layer_past
|
| 457 |
+
key = torch.cat((past_key, key), dim=-2)
|
|
|
|
|
|
|
|
|
|
| 458 |
value = torch.cat((past_value, value), dim=-2)
|
| 459 |
|
| 460 |
if use_cache is True:
|
| 461 |
+
present = (key, value)
|
|
|
|
|
|
|
| 462 |
else:
|
| 463 |
+
present = None
|
| 464 |
|
| 465 |
+
if self.reorder_and_upcast_attn:
|
| 466 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(
|
| 467 |
+
query, key, value, attention_mask, head_mask
|
| 468 |
+
)
|
| 469 |
+
else:
|
| 470 |
+
attn_output, attn_weights = self._attn(
|
| 471 |
+
query, key, value, attention_mask, head_mask
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
| 475 |
+
attn_output = self.c_proj(attn_output)
|
| 476 |
+
attn_output = self.resid_dropout(attn_output)
|
| 477 |
|
| 478 |
+
outputs = (attn_output, present)
|
| 479 |
+
if output_attentions:
|
| 480 |
+
outputs += (attn_weights,)
|
| 481 |
|
|
|
|
| 482 |
return outputs # a, present, (attentions)
|
| 483 |
|
| 484 |
|
| 485 |
+
class GPT2MLP(nn.Module):
|
| 486 |
+
def __init__(self, intermediate_size, config):
|
| 487 |
super().__init__()
|
| 488 |
+
embed_dim = config.hidden_size
|
| 489 |
+
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
| 490 |
+
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
| 491 |
self.act = ACT2FN[config.activation_function]
|
| 492 |
self.dropout = nn.Dropout(config.resid_pdrop)
|
| 493 |
|
| 494 |
+
def forward(
|
| 495 |
+
self, hidden_states: Optional[Tuple[torch.FloatTensor]]
|
| 496 |
+
) -> torch.FloatTensor:
|
| 497 |
+
hidden_states = self.c_fc(hidden_states)
|
| 498 |
+
hidden_states = self.act(hidden_states)
|
| 499 |
+
hidden_states = self.c_proj(hidden_states)
|
| 500 |
+
hidden_states = self.dropout(hidden_states)
|
| 501 |
+
return hidden_states
|
| 502 |
|
| 503 |
|
| 504 |
+
class GPT2Block(nn.Module):
|
| 505 |
+
def __init__(self, config, layer_idx=None):
|
| 506 |
super().__init__()
|
| 507 |
+
hidden_size = config.hidden_size
|
| 508 |
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
| 509 |
+
|
| 510 |
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 511 |
+
self.attn = GPT2Attention(config, layer_idx=layer_idx)
|
| 512 |
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
| 513 |
+
|
| 514 |
if config.add_cross_attention:
|
| 515 |
+
self.crossattention = GPT2Attention(
|
| 516 |
+
config, is_cross_attention=True, layer_idx=layer_idx
|
| 517 |
)
|
| 518 |
self.ln_cross_attn = nn.LayerNorm(
|
| 519 |
hidden_size, eps=config.layer_norm_epsilon
|
| 520 |
)
|
| 521 |
+
|
| 522 |
+
self.mlp = GPT2MLP(inner_dim, config)
|
| 523 |
|
| 524 |
def forward(
|
| 525 |
self,
|
| 526 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 527 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 528 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 529 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 530 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 531 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 532 |
+
use_cache: Optional[bool] = False,
|
| 533 |
+
output_attentions: Optional[bool] = False,
|
| 534 |
+
) -> Union[
|
| 535 |
+
Tuple[torch.Tensor],
|
| 536 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]],
|
| 537 |
+
]:
|
| 538 |
+
|
| 539 |
+
# removed in GROVER
|
| 540 |
+
# residual = hidden_states
|
| 541 |
+
# hidden_states = self.ln_1(hidden_states)
|
| 542 |
attn_outputs = self.attn(
|
| 543 |
hidden_states,
|
| 544 |
layer_past=layer_past,
|
|
|
|
| 554 |
|
| 555 |
if encoder_hidden_states is not None:
|
| 556 |
# add one self-attention block for cross-attention
|
| 557 |
+
if not hasattr(self, "crossattention"):
|
| 558 |
+
raise ValueError(
|
| 559 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
| 560 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
| 561 |
+
)
|
| 562 |
+
# removed in GROVER
|
| 563 |
+
# residual = hidden_states
|
| 564 |
+
# hidden_states = self.ln_cross_attn(hidden_states)
|
| 565 |
cross_attn_outputs = self.crossattention(
|
| 566 |
+
hidden_states,
|
| 567 |
attention_mask=attention_mask,
|
| 568 |
head_mask=head_mask,
|
| 569 |
encoder_hidden_states=encoder_hidden_states,
|
|
|
|
| 572 |
)
|
| 573 |
attn_output = cross_attn_outputs[0]
|
| 574 |
# residual connection
|
| 575 |
+
hidden_states = attn_output + hidden_states
|
| 576 |
outputs = (
|
| 577 |
outputs + cross_attn_outputs[2:]
|
| 578 |
) # add cross attentions if we output attention weights
|
| 579 |
|
| 580 |
+
residual = hidden_states
|
| 581 |
+
hidden_states = self.ln_1(hidden_states)
|
| 582 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
| 583 |
# residual connection
|
| 584 |
+
hidden_states = residual + feed_forward_hidden_states
|
| 585 |
|
| 586 |
+
hidden_states = self.ln_2(hidden_states) # Added in GROVER
|
| 587 |
+
|
| 588 |
+
if use_cache:
|
| 589 |
+
outputs = (hidden_states,) + outputs
|
| 590 |
+
else:
|
| 591 |
+
outputs = (hidden_states,) + outputs[1:]
|
| 592 |
|
|
|
|
| 593 |
return outputs # hidden_states, present, (attentions, cross_attentions)
|
| 594 |
|
| 595 |
|
|
|
|
| 603 |
load_tf_weights = load_tf_weights_in_gpt2
|
| 604 |
base_model_prefix = "transformer"
|
| 605 |
is_parallelizable = True
|
| 606 |
+
supports_gradient_checkpointing = True
|
| 607 |
|
| 608 |
def __init__(self, *inputs, **kwargs):
|
| 609 |
super().__init__(*inputs, **kwargs)
|
| 610 |
|
| 611 |
def _init_weights(self, module):
|
| 612 |
"""Initialize the weights."""
|
| 613 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
| 614 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 615 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 616 |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 617 |
+
if module.bias is not None:
|
| 618 |
module.bias.data.zero_()
|
| 619 |
+
elif isinstance(module, nn.Embedding):
|
| 620 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 621 |
+
if module.padding_idx is not None:
|
| 622 |
+
module.weight.data[module.padding_idx].zero_()
|
| 623 |
elif isinstance(module, nn.LayerNorm):
|
| 624 |
module.bias.data.zero_()
|
| 625 |
module.weight.data.fill_(1.0)
|
| 626 |
|
| 627 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 628 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 629 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 630 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 631 |
+
#
|
| 632 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 633 |
+
for name, p in module.named_parameters():
|
| 634 |
+
if "c_proj" in name and "weight" in name:
|
| 635 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
| 636 |
+
p.data.normal_(
|
| 637 |
+
mean=0.0,
|
| 638 |
+
std=(
|
| 639 |
+
self.config.initializer_range
|
| 640 |
+
/ math.sqrt(2 * self.config.n_layer)
|
| 641 |
+
),
|
| 642 |
+
)
|
| 643 |
+
|
| 644 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 645 |
+
if isinstance(module, GPT2Model):
|
| 646 |
+
module.gradient_checkpointing = value
|
| 647 |
+
|
| 648 |
|
| 649 |
@dataclass
|
| 650 |
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
|
|
|
| 652 |
Base class for outputs of models predicting if two sentences are consecutive or not.
|
| 653 |
|
| 654 |
Args:
|
| 655 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
| 656 |
Language modeling loss.
|
| 657 |
+
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
|
| 658 |
Multiple choice classification loss.
|
| 659 |
+
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
| 660 |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
| 661 |
+
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
|
| 662 |
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
| 663 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
| 664 |
+
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
|
| 665 |
+
sequence_length, embed_size_per_head)`).
|
| 666 |
|
| 667 |
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
| 668 |
+
`past_key_values` input) to speed up sequential decoding.
|
| 669 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 670 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
| 671 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
| 672 |
|
| 673 |
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
| 674 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 675 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 676 |
+
sequence_length)`.
|
| 677 |
|
| 678 |
+
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
|
| 679 |
+
self-attention heads.
|
| 680 |
"""
|
| 681 |
|
| 682 |
loss: Optional[torch.FloatTensor] = None
|
| 683 |
mc_loss: Optional[torch.FloatTensor] = None
|
| 684 |
logits: torch.FloatTensor = None
|
| 685 |
mc_logits: torch.FloatTensor = None
|
| 686 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 687 |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 688 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 689 |
|
| 690 |
|
| 691 |
GPT2_START_DOCSTRING = r"""
|
| 692 |
|
| 693 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 694 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 695 |
+
etc.)
|
| 696 |
|
| 697 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 698 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 699 |
+
and behavior.
|
| 700 |
|
| 701 |
Parameters:
|
| 702 |
+
config ([`GPT2Config`]): Model configuration class with all the parameters of the model.
|
| 703 |
Initializing with a config file does not load the weights associated with the model, only the
|
| 704 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
|
|
| 705 |
"""
|
| 706 |
|
| 707 |
GPT2_INPUTS_DOCSTRING = r"""
|
| 708 |
Args:
|
| 709 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
| 710 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 711 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
| 712 |
sequence tokens in the vocabulary.
|
| 713 |
|
| 714 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
| 715 |
+
`input_ids`.
|
| 716 |
|
| 717 |
+
Indices can be obtained using [`GPT2Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 718 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
| 719 |
|
| 720 |
+
[What are input IDs?](../glossary#input-ids)
|
| 721 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
|
| 722 |
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
| 723 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
| 724 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
| 725 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 726 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
| 727 |
|
| 728 |
- 1 for tokens that are **not masked**,
|
| 729 |
- 0 for tokens that are **masked**.
|
| 730 |
|
| 731 |
+
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
| 732 |
+
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
| 733 |
+
`len(past_key_values) + len(input_ids)`
|
|
|
|
| 734 |
|
| 735 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 736 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
| 737 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
| 738 |
+
1]`:
|
| 739 |
|
| 740 |
+
- 0 corresponds to a *sentence A* token,
|
| 741 |
+
- 1 corresponds to a *sentence B* token.
|
|
|
|
|
|
|
| 742 |
|
| 743 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 744 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 745 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 746 |
+
config.max_position_embeddings - 1]`.
|
| 747 |
+
|
| 748 |
+
[What are position IDs?](../glossary#position-ids)
|
| 749 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 750 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 751 |
|
| 752 |
- 1 indicates the head is **not masked**,
|
| 753 |
- 0 indicates the head is **masked**.
|
| 754 |
|
| 755 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 756 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 757 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 758 |
+
model's internal embedding lookup matrix.
|
| 759 |
+
|
| 760 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
| 761 |
+
`past_key_values`).
|
| 762 |
+
use_cache (`bool`, *optional*):
|
| 763 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 764 |
+
`past_key_values`).
|
| 765 |
+
output_attentions (`bool`, *optional*):
|
| 766 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 767 |
tensors for more detail.
|
| 768 |
+
output_hidden_states (`bool`, *optional*):
|
| 769 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 770 |
more detail.
|
| 771 |
+
return_dict (`bool`, *optional*):
|
| 772 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 773 |
"""
|
|
|
|
| 774 |
PARALLELIZE_DOCSTRING = r"""
|
| 775 |
This is an experimental feature and is a subject to change at a moment's notice.
|
| 776 |
|
|
|
|
| 778 |
it will evenly distribute blocks across all devices.
|
| 779 |
|
| 780 |
Args:
|
| 781 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
| 782 |
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
| 783 |
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
| 784 |
have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
|
|
|
|
| 789 |
- gpt2-large: 36
|
| 790 |
- gpt2-xl: 48
|
| 791 |
|
| 792 |
+
Example:
|
| 793 |
+
|
| 794 |
+
```python
|
| 795 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
|
| 796 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2-xl")
|
| 797 |
+
device_map = {
|
| 798 |
+
0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
|
| 799 |
+
1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
|
| 800 |
+
2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
|
| 801 |
+
3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
|
| 802 |
+
}
|
| 803 |
+
model.parallelize(device_map)
|
| 804 |
+
```
|
| 805 |
"""
|
| 806 |
DEPARALLELIZE_DOCSTRING = r"""
|
| 807 |
Moves the model to cpu from a model parallel state.
|
| 808 |
|
| 809 |
+
Example:
|
| 810 |
+
|
| 811 |
+
```python
|
| 812 |
+
# On a 4 GPU machine with gpt2-large:
|
| 813 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2-large")
|
| 814 |
+
device_map = {
|
| 815 |
+
0: [0, 1, 2, 3, 4, 5, 6, 7],
|
| 816 |
+
1: [8, 9, 10, 11, 12, 13, 14, 15],
|
| 817 |
+
2: [16, 17, 18, 19, 20, 21, 22, 23],
|
| 818 |
+
3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
|
| 819 |
+
}
|
| 820 |
+
model.parallelize(device_map) # Splits the model across several devices
|
| 821 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
| 822 |
+
```
|
| 823 |
"""
|
| 824 |
|
| 825 |
|
|
|
|
| 828 |
GPT2_START_DOCSTRING,
|
| 829 |
)
|
| 830 |
class GPT2Model(GPT2PreTrainedModel):
|
| 831 |
+
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
| 832 |
+
|
| 833 |
def __init__(self, config):
|
| 834 |
super().__init__(config)
|
| 835 |
|
| 836 |
+
self.embed_dim = config.hidden_size
|
|
|
|
|
|
|
|
|
|
| 837 |
|
| 838 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 839 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
| 840 |
+
self.emb_norm = nn.LayerNorm(
|
| 841 |
+
config.n_embd, eps=config.layer_norm_epsilon
|
| 842 |
+
) # Added in GROVER
|
| 843 |
self.drop = nn.Dropout(config.embd_pdrop)
|
| 844 |
self.h = nn.ModuleList(
|
| 845 |
+
[GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
| 846 |
)
|
| 847 |
+
# Removed in GROVER
|
| 848 |
+
# self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
|
|
|
|
|
|
| 849 |
|
| 850 |
# Model parallel
|
| 851 |
self.model_parallel = False
|
| 852 |
self.device_map = None
|
| 853 |
+
self.gradient_checkpointing = False
|
| 854 |
+
|
| 855 |
+
# Initialize weights and apply final processing
|
| 856 |
+
self.post_init()
|
| 857 |
|
| 858 |
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 859 |
def parallelize(self, device_map=None):
|
|
|
|
| 873 |
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
| 874 |
self.wte = self.wte.to(self.first_device)
|
| 875 |
self.wpe = self.wpe.to(self.first_device)
|
| 876 |
+
|
| 877 |
+
# Added in GROVER
|
| 878 |
+
# Wissam: not sure if is fine being on cpu or Better on GPU
|
| 879 |
+
self.emb_norm = self.emb_norm.to(
|
| 880 |
+
"cuda:" + str(min(self.device_map.keys()))
|
| 881 |
+
) # GPU
|
| 882 |
+
# self.emb_norm = self.emb_norm.to(self.first_device) # CPU
|
| 883 |
+
|
| 884 |
# Load onto devices
|
| 885 |
for k, v in self.device_map.items():
|
| 886 |
for block in v:
|
| 887 |
cuda_device = "cuda:" + str(k)
|
| 888 |
self.h[block] = self.h[block].to(cuda_device)
|
| 889 |
# ln_f to last
|
| 890 |
+
# Removed in GROVER
|
| 891 |
+
# self.ln_f = self.ln_f.to(self.last_device)
|
| 892 |
|
| 893 |
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
| 894 |
def deparallelize(self):
|
|
|
|
| 898 |
self.last_device = "cpu"
|
| 899 |
self.wte = self.wte.to("cpu")
|
| 900 |
self.wpe = self.wpe.to("cpu")
|
| 901 |
+
# Added in GROVER
|
| 902 |
+
self.emb_norm = self.emb_norm.to("cpu")
|
| 903 |
for index in range(len(self.h)):
|
| 904 |
self.h[index] = self.h[index].to("cpu")
|
| 905 |
+
# Removed in GROVER
|
| 906 |
+
# self.ln_f = self.ln_f.to("cpu")
|
| 907 |
torch.cuda.empty_cache()
|
| 908 |
|
| 909 |
def get_input_embeddings(self):
|
|
|
|
| 921 |
|
| 922 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 923 |
@add_code_sample_docstrings(
|
| 924 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 925 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 926 |
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
| 927 |
config_class=_CONFIG_FOR_DOC,
|
| 928 |
)
|
| 929 |
def forward(
|
| 930 |
self,
|
| 931 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 932 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 933 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 934 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 935 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 936 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 937 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 938 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 939 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 940 |
+
use_cache: Optional[bool] = None,
|
| 941 |
+
output_attentions: Optional[bool] = None,
|
| 942 |
+
output_hidden_states: Optional[bool] = None,
|
| 943 |
+
return_dict: Optional[bool] = None,
|
| 944 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
| 945 |
output_attentions = (
|
| 946 |
output_attentions
|
| 947 |
if output_attentions is not None
|
|
|
|
| 971 |
else:
|
| 972 |
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 973 |
|
| 974 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 975 |
+
|
| 976 |
if token_type_ids is not None:
|
| 977 |
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 978 |
if position_ids is not None:
|
|
|
|
| 980 |
|
| 981 |
if past_key_values is None:
|
| 982 |
past_length = 0
|
| 983 |
+
past_key_values = tuple([None] * len(self.h))
|
| 984 |
else:
|
| 985 |
past_length = past_key_values[0][0].size(-2)
|
| 986 |
if position_ids is None:
|
|
|
|
| 987 |
position_ids = torch.arange(
|
| 988 |
past_length,
|
| 989 |
input_shape[-1] + past_length,
|
|
|
|
| 992 |
)
|
| 993 |
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
| 994 |
|
| 995 |
+
# GPT2Attention mask.
|
| 996 |
if attention_mask is not None:
|
| 997 |
if batch_size <= 0:
|
| 998 |
raise ValueError("batch_size has to be defined and > 0")
|
|
|
|
| 1012 |
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
| 1013 |
attention_mask = (1.0 - attention_mask) * -10000.0
|
| 1014 |
|
| 1015 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
| 1016 |
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
| 1017 |
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
| 1018 |
(
|
|
|
|
| 1043 |
hidden_states = hidden_states + token_type_embeds
|
| 1044 |
|
| 1045 |
hidden_states = self.drop(hidden_states)
|
| 1046 |
+
# Added in Grover
|
| 1047 |
+
hidden_states = self.emb_norm(hidden_states)
|
| 1048 |
+
|
| 1049 |
output_shape = input_shape + (hidden_states.size(-1),)
|
| 1050 |
|
| 1051 |
presents = () if use_cache else None
|
|
|
|
| 1069 |
attention_mask = attention_mask.to(hidden_states.device)
|
| 1070 |
if isinstance(head_mask, torch.Tensor):
|
| 1071 |
head_mask = head_mask.to(hidden_states.device)
|
|
|
|
| 1072 |
if output_hidden_states:
|
| 1073 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
|
|
|
| 1074 |
|
| 1075 |
+
if self.gradient_checkpointing and self.training:
|
| 1076 |
+
|
| 1077 |
+
if use_cache:
|
| 1078 |
+
logger.warning(
|
| 1079 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1080 |
+
)
|
| 1081 |
+
use_cache = False
|
| 1082 |
|
| 1083 |
def create_custom_forward(module):
|
| 1084 |
def custom_forward(*inputs):
|
| 1085 |
+
# None for past_key_value
|
| 1086 |
+
return module(*inputs, use_cache, output_attentions)
|
|
|
|
|
|
|
|
|
|
| 1087 |
|
| 1088 |
return custom_forward
|
| 1089 |
|
| 1090 |
outputs = torch.utils.checkpoint.checkpoint(
|
| 1091 |
create_custom_forward(block),
|
| 1092 |
hidden_states,
|
| 1093 |
+
None,
|
| 1094 |
attention_mask,
|
| 1095 |
head_mask[i],
|
| 1096 |
encoder_hidden_states,
|
|
|
|
| 1108 |
output_attentions=output_attentions,
|
| 1109 |
)
|
| 1110 |
|
| 1111 |
+
hidden_states = outputs[0]
|
| 1112 |
if use_cache is True:
|
| 1113 |
+
presents = presents + (outputs[1],)
|
| 1114 |
|
| 1115 |
if output_attentions:
|
| 1116 |
all_self_attentions = all_self_attentions + (
|
|
|
|
| 1127 |
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
| 1128 |
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
| 1129 |
|
| 1130 |
+
# Removed in Grover
|
| 1131 |
+
# hidden_states = self.ln_f(hidden_states)
|
| 1132 |
|
| 1133 |
+
hidden_states = hidden_states.view(output_shape)
|
| 1134 |
# Add last hidden state
|
| 1135 |
if output_hidden_states:
|
| 1136 |
all_hidden_states = all_hidden_states + (hidden_states,)
|
|
|
|
| 1165 |
GPT2_START_DOCSTRING,
|
| 1166 |
)
|
| 1167 |
class GPT2LMHeadModel(GPT2PreTrainedModel):
|
| 1168 |
+
_keys_to_ignore_on_load_missing = [
|
| 1169 |
+
r"attn.masked_bias",
|
| 1170 |
+
r"attn.bias",
|
| 1171 |
+
r"lm_head.weight",
|
| 1172 |
+
]
|
| 1173 |
|
| 1174 |
def __init__(self, config):
|
| 1175 |
super().__init__(config)
|
| 1176 |
self.transformer = GPT2Model(config)
|
| 1177 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 1178 |
|
|
|
|
|
|
|
| 1179 |
# Model parallel
|
| 1180 |
self.model_parallel = False
|
| 1181 |
self.device_map = None
|
| 1182 |
|
| 1183 |
+
# Initialize weights and apply final processing
|
| 1184 |
+
self.post_init()
|
| 1185 |
+
|
| 1186 |
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 1187 |
def parallelize(self, device_map=None):
|
| 1188 |
self.device_map = (
|
|
|
|
| 1206 |
def get_output_embeddings(self):
|
| 1207 |
return self.lm_head
|
| 1208 |
|
| 1209 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1210 |
+
self.lm_head = new_embeddings
|
| 1211 |
+
|
| 1212 |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 1213 |
token_type_ids = kwargs.get("token_type_ids", None)
|
| 1214 |
# only last token for inputs_ids if past is defined in kwargs
|
|
|
|
| 1239 |
|
| 1240 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1241 |
@add_code_sample_docstrings(
|
| 1242 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 1243 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1244 |
output_type=CausalLMOutputWithCrossAttentions,
|
| 1245 |
config_class=_CONFIG_FOR_DOC,
|
| 1246 |
)
|
| 1247 |
def forward(
|
| 1248 |
self,
|
| 1249 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1250 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1251 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1252 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1253 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1254 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1255 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1256 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 1257 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 1258 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1259 |
+
use_cache: Optional[bool] = None,
|
| 1260 |
+
output_attentions: Optional[bool] = None,
|
| 1261 |
+
output_hidden_states: Optional[bool] = None,
|
| 1262 |
+
return_dict: Optional[bool] = None,
|
| 1263 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
| 1264 |
r"""
|
| 1265 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1266 |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1267 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 1268 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 1269 |
"""
|
| 1270 |
return_dict = (
|
| 1271 |
return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
| 1324 |
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1325 |
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1326 |
"""
|
| 1327 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 1328 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 1329 |
+
beam_idx at every generation step.
|
| 1330 |
"""
|
| 1331 |
return tuple(
|
| 1332 |
tuple(
|
|
|
|
| 1347 |
GPT2_START_DOCSTRING,
|
| 1348 |
)
|
| 1349 |
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
|
| 1350 |
+
_keys_to_ignore_on_load_missing = [
|
| 1351 |
+
r"attn.masked_bias",
|
| 1352 |
+
r"attn.bias",
|
| 1353 |
+
r"lm_head.weight",
|
| 1354 |
+
]
|
| 1355 |
+
|
| 1356 |
def __init__(self, config):
|
| 1357 |
super().__init__(config)
|
| 1358 |
config.num_labels = 1
|
|
|
|
| 1360 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 1361 |
self.multiple_choice_head = SequenceSummary(config)
|
| 1362 |
|
|
|
|
|
|
|
| 1363 |
# Model parallel
|
| 1364 |
self.model_parallel = False
|
| 1365 |
self.device_map = None
|
| 1366 |
|
| 1367 |
+
# Initialize weights and apply final processing
|
| 1368 |
+
self.post_init()
|
| 1369 |
+
|
| 1370 |
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
| 1371 |
def parallelize(self, device_map=None):
|
| 1372 |
self.device_map = (
|
|
|
|
| 1394 |
def get_output_embeddings(self):
|
| 1395 |
return self.lm_head
|
| 1396 |
|
| 1397 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1398 |
+
self.lm_head = new_embeddings
|
| 1399 |
+
|
| 1400 |
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
| 1401 |
token_type_ids = kwargs.get("token_type_ids", None)
|
| 1402 |
# only last token for inputs_ids if past is defined in kwargs
|
|
|
|
| 1432 |
)
|
| 1433 |
def forward(
|
| 1434 |
self,
|
| 1435 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1436 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1437 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1438 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1439 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1440 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1441 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1442 |
+
mc_token_ids: Optional[torch.LongTensor] = None,
|
| 1443 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1444 |
+
mc_labels: Optional[torch.LongTensor] = None,
|
| 1445 |
+
use_cache: Optional[bool] = None,
|
| 1446 |
+
output_attentions: Optional[bool] = None,
|
| 1447 |
+
output_hidden_states: Optional[bool] = None,
|
| 1448 |
+
return_dict: Optional[bool] = None,
|
| 1449 |
**kwargs,
|
| 1450 |
+
) -> Union[Tuple, GPT2DoubleHeadsModelOutput]:
|
| 1451 |
r"""
|
| 1452 |
+
mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input):
|
| 1453 |
+
Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) -
|
| 1454 |
+
1[`.
|
| 1455 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1456 |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1457 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size - 1]` All labels set to
|
| 1458 |
+
`-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`
|
| 1459 |
+
mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*):
|
| 1460 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
|
| 1461 |
+
where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above)
|
|
|
|
| 1462 |
|
| 1463 |
Return:
|
| 1464 |
|
| 1465 |
+
Example:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1466 |
|
| 1467 |
+
```python
|
| 1468 |
+
>>> import torch
|
| 1469 |
+
>>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
|
| 1470 |
|
| 1471 |
+
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 1472 |
+
>>> model = GPT2DoubleHeadsModel.from_pretrained("gpt2")
|
| 1473 |
|
| 1474 |
+
>>> # Add a [CLS] to the vocabulary (we should train it also!)
|
| 1475 |
+
>>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"})
|
| 1476 |
+
>>> # Update the model embeddings with the new vocabulary size
|
| 1477 |
+
>>> embedding_layer = model.resize_token_embeddings(len(tokenizer))
|
| 1478 |
|
| 1479 |
+
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
|
| 1480 |
+
>>> encoded_choices = [tokenizer.encode(s) for s in choices]
|
| 1481 |
+
>>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
|
| 1482 |
|
| 1483 |
+
>>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
|
| 1484 |
+
>>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
|
|
|
|
| 1485 |
|
| 1486 |
+
>>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
|
| 1487 |
+
>>> lm_logits = outputs.logits
|
| 1488 |
+
>>> mc_logits = outputs.mc_logits
|
| 1489 |
+
```"""
|
| 1490 |
return_dict = (
|
| 1491 |
return_dict if return_dict is not None else self.config.use_return_dict
|
| 1492 |
)
|
|
|
|
| 1551 |
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 1552 |
) -> Tuple[Tuple[torch.Tensor]]:
|
| 1553 |
"""
|
| 1554 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 1555 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 1556 |
+
beam_idx at every generation step.
|
| 1557 |
"""
|
| 1558 |
return tuple(
|
| 1559 |
tuple(
|
|
|
|
| 1568 |
"""
|
| 1569 |
The GPT2 Model transformer with a sequence classification head on top (linear layer).
|
| 1570 |
|
| 1571 |
+
[`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1572 |
+
(e.g. GPT-1) do.
|
| 1573 |
|
| 1574 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1575 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1576 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1577 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1578 |
+
each row of the batch).
|
| 1579 |
""",
|
| 1580 |
GPT2_START_DOCSTRING,
|
| 1581 |
)
|
|
|
|
| 1588 |
self.transformer = GPT2Model(config)
|
| 1589 |
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
| 1590 |
|
|
|
|
|
|
|
| 1591 |
# Model parallel
|
| 1592 |
self.model_parallel = False
|
| 1593 |
self.device_map = None
|
| 1594 |
|
| 1595 |
+
# Initialize weights and apply final processing
|
| 1596 |
+
self.post_init()
|
| 1597 |
+
|
| 1598 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1599 |
@add_code_sample_docstrings(
|
| 1600 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 1601 |
+
checkpoint="microsoft/DialogRPT-updown",
|
| 1602 |
output_type=SequenceClassifierOutputWithPast,
|
| 1603 |
config_class=_CONFIG_FOR_DOC,
|
| 1604 |
+
expected_output="'LABEL_0'",
|
| 1605 |
+
expected_loss=5.28,
|
| 1606 |
)
|
| 1607 |
def forward(
|
| 1608 |
self,
|
| 1609 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1610 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1611 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1612 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1613 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1614 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1615 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1616 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1617 |
+
use_cache: Optional[bool] = None,
|
| 1618 |
+
output_attentions: Optional[bool] = None,
|
| 1619 |
+
output_hidden_states: Optional[bool] = None,
|
| 1620 |
+
return_dict: Optional[bool] = None,
|
| 1621 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1622 |
r"""
|
| 1623 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1624 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1625 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1626 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1627 |
"""
|
| 1628 |
return_dict = (
|
| 1629 |
return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
| 1664 |
sequence_lengths = -1
|
| 1665 |
logger.warning(
|
| 1666 |
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1667 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1668 |
)
|
| 1669 |
|
| 1670 |
+
pooled_logits = logits[
|
| 1671 |
+
torch.arange(batch_size, device=self.device), sequence_lengths
|
| 1672 |
+
]
|
| 1673 |
|
| 1674 |
loss = None
|
| 1675 |
if labels is not None:
|
| 1676 |
+
if self.config.problem_type is None:
|
| 1677 |
+
if self.num_labels == 1:
|
| 1678 |
+
self.config.problem_type = "regression"
|
| 1679 |
+
elif self.num_labels > 1 and (
|
| 1680 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
| 1681 |
+
):
|
| 1682 |
+
self.config.problem_type = "single_label_classification"
|
| 1683 |
+
else:
|
| 1684 |
+
self.config.problem_type = "multi_label_classification"
|
| 1685 |
+
|
| 1686 |
+
if self.config.problem_type == "regression":
|
| 1687 |
loss_fct = MSELoss()
|
| 1688 |
+
if self.num_labels == 1:
|
| 1689 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1690 |
+
else:
|
| 1691 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1692 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1693 |
loss_fct = CrossEntropyLoss()
|
| 1694 |
loss = loss_fct(
|
| 1695 |
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 1696 |
)
|
| 1697 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1698 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1699 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1700 |
if not return_dict:
|
| 1701 |
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1702 |
return ((loss,) + output) if loss is not None else output
|
|
|
|
| 1735 |
self.dropout = nn.Dropout(classifier_dropout)
|
| 1736 |
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1737 |
|
|
|
|
|
|
|
| 1738 |
# Model parallel
|
| 1739 |
self.model_parallel = False
|
| 1740 |
self.device_map = None
|
| 1741 |
|
| 1742 |
+
# Initialize weights and apply final processing
|
| 1743 |
+
self.post_init()
|
| 1744 |
+
|
| 1745 |
@add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
|
| 1746 |
+
# fmt: off
|
| 1747 |
@add_code_sample_docstrings(
|
| 1748 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
| 1749 |
+
checkpoint="brad1141/gpt2-finetuned-comp2",
|
| 1750 |
output_type=TokenClassifierOutput,
|
| 1751 |
config_class=_CONFIG_FOR_DOC,
|
| 1752 |
+
expected_loss=0.25,
|
| 1753 |
+
expected_output=["Lead", "Lead", "Lead", "Position", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead"],
|
| 1754 |
)
|
| 1755 |
+
# fmt: on
|
| 1756 |
def forward(
|
| 1757 |
self,
|
| 1758 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1759 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 1760 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1761 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
| 1762 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1763 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 1764 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1765 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1766 |
+
use_cache: Optional[bool] = None,
|
| 1767 |
+
output_attentions: Optional[bool] = None,
|
| 1768 |
+
output_hidden_states: Optional[bool] = None,
|
| 1769 |
+
return_dict: Optional[bool] = None,
|
| 1770 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
| 1771 |
r"""
|
| 1772 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1773 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1774 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1775 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1776 |
"""
|
| 1777 |
return_dict = (
|
| 1778 |
return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
| 1799 |
loss = None
|
| 1800 |
if labels is not None:
|
| 1801 |
loss_fct = CrossEntropyLoss()
|
| 1802 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1803 |
|
| 1804 |
if not return_dict:
|
| 1805 |
output = (logits,) + transformer_outputs[2:]
|
|
|
|
| 1810 |
logits=logits,
|
| 1811 |
hidden_states=transformer_outputs.hidden_states,
|
| 1812 |
attentions=transformer_outputs.attentions,
|
| 1813 |
+
)
|