Yolov13 / app.py
atalaydenknalbant's picture
Update app.py
f830549 verified
raw
history blame
7.72 kB
import spaces
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from ultralytics import YOLO
from huggingface_hub import hf_hub_download
import cv2
import tempfile
import numpy as np
def download_model(model_filename):
return hf_hub_download(repo_id="atalaydenknalbant/Yolov13", filename=model_filename)
@spaces.GPU
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
model_path = download_model(model_id)
if input_type == "Image":
if image is None:
width, height = 640, 480
blank_image = Image.new("RGB", (width, height), color="white")
draw = ImageDraw.Draw(blank_image)
message = "No image provided"
font = ImageFont.load_default(size=40)
bbox = draw.textbbox((0, 0), message, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
text_x = (width - text_width) / 2
text_y = (height - text_height) / 2
draw.text((text_x, text_y), message, fill="black", font=font)
return blank_image, None
model = YOLO(model_path)
results = model.predict(
source=image,
conf=conf_threshold,
iou=iou_threshold,
imgsz=640,
max_det=max_detection,
show_labels=True,
show_conf=True,
)
for r in results:
image_array = r.plot()
annotated_image = Image.fromarray(image_array[..., ::-1])
return annotated_image, None
elif input_type == "Video":
if video is None:
width, height = 640, 480
blank_image = Image.new("RGB", (width, height), color="white")
draw = ImageDraw.Draw(blank_image)
message = "No video provided"
font = ImageFont.load_default(size=40)
bbox = draw.textbbox((0, 0), message, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
text_x = (width - text_width) / 2
text_y = (height - text_height) / 2
draw.text((text_x, text_y), message, fill="black", font=font)
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
out.write(frame)
out.release()
return None, temp_video_file
model = YOLO(model_path)
cap = cv2.VideoCapture(video)
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
results = model.predict(
source=pil_frame,
conf=conf_threshold,
iou=iou_threshold,
imgsz=640,
max_det=max_detection,
show_labels=True,
show_conf=True,
)
for r in results:
annotated_frame_array = r.plot()
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
frames.append(annotated_frame)
cap.release()
if not frames:
return None, None
height_out, width_out, _ = frames[0].shape
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
for f in frames:
f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
out.write(f_bgr)
out.release()
return None, temp_video_file
return None, None
def update_visibility(input_type):
if input_type == "Image":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=true)
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
annotated_image, _ = yolo_inference(
input_type="Image",
image=image,
video=None,
model_id=model_id,
conf_threshold=conf_threshold,
iou_threshold=iou_threshold,
max_detection=max_detection
)
return gr.update(value="Image"), annotated_image
with gr.Blocks() as app:
gr.Markdown("# Yolo13: Object Detection")
gr.Markdown("Upload an image or video for inference using the latest YOLOv13 models.")
gr.Markdown("πŸ“ **Note:** Better-trained models will be deployed as they become available.")
with gr.Accordion("Paper and Citation", open=False):
gr.Markdown("""
This application is based on the research from the paper: **YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception**.
- **Authors:** Mengqi Lei, Siqi Li, Yihong Wu, et al.
- **Preprint Link:** [https://arxiv.org/abs/2506.17733](https://arxiv.org/abs/2506.17733)
**BibTeX:**
```
@article{yolov13,
title={YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception},
author={Lei, Mengqi and Li, Siqi and Wu, Yihong and et al.},
journal={arXiv preprint arXiv:2506.17733},
year={2025}
}
```
""")
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image", visible=True)
video = gr.Video(label="Video", visible=False)
input_type = gr.Radio(
choices=["Image", "Video"],
value="Image",
label="Input Type",
)
model_id = gr.Dropdown(
label="Model Name",
choices=[
'yolov13n.pt', 'yolov13s.pt', 'yolov13l.pt', 'yolov13x.pt',
],
value="yolov13n.pt",
)
conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold")
max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection")
infer_button = gr.Button("Detect Objects")
with gr.Column():
output_image = gr.Image(type="pil", label="Annotated Image", visible=True)
output_video = gr.Video(label="Annotated Video", visible=False)
gr.DeepLinkButton()
input_type.change(
fn=update_visibility,
inputs=input_type,
outputs=[image, video, output_image, output_video],
)
infer_button.click(
fn=yolo_inference,
inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection],
outputs=[output_image, output_video],
)
gr.Examples(
examples=[
["zidane.jpg", "yolov13s.pt", 0.35, 0.45, 300],
["bus.jpg", "yolov13l.pt", 0.35, 0.45, 300],
["yolo_vision.jpg", "yolov13x.pt", 0.35, 0.45, 300],
],
fn=yolo_inference_for_examples,
inputs=[image, model_id, conf_threshold, iou_threshold, max_detection],
outputs=[input_type, output_image],
label="Examples (Images)",
)
if __name__ == '__main__':
app.launch()