Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import supervision as sv | |
import PIL.Image as Image | |
from PIL import ImageDraw, ImageFont # Added ImageDraw and ImageFont import | |
from ultralytics import YOLO | |
from huggingface_hub import hf_hub_download, HfApi | |
import gradio as gr | |
import torch | |
import cv2 | |
import numpy as np | |
import tempfile | |
global repo_id | |
repo_id = "atalaydenknalbant/asl-yolo-models" | |
def get_model_filenames(repo_id): | |
""" | |
Retrieves a list of YOLO model filenames from a specified Hugging Face repository. | |
This function connects to the Hugging Face Hub API, lists all files | |
within the given repository, and filters for files ending with '.pt' | |
to identify potential model weight files. | |
Args: | |
repo_id (str): The repository ID on Hugging Face Hub (e.g., "user/repo_name"). | |
Returns: | |
list: A list of strings, where each string is the filename of a | |
'.pt' model found in the repository. | |
""" | |
api = HfApi() | |
files = api.list_repo_files(repo_id) | |
model_filenames = [file for file in files if file.endswith('.pt')] | |
return model_filenames | |
model_filenames = get_model_filenames(repo_id) | |
def download_models(repo_id, model_id): | |
""" | |
Downloads a specific model file from a Hugging Face repository to a local directory. | |
This function uses `hf_hub_download` to fetch the model identified by `model_id` | |
from the `repo_id` and saves it in the current working directory. | |
Args: | |
repo_id (str): The repository ID on Hugging Face Hub where the model is stored. | |
model_id (str): The filename of the specific model to download (e.g., 'yolo11n.pt'). | |
Returns: | |
str: The local file path to the downloaded model. | |
""" | |
hf_hub_download(repo_id, filename=model_id, local_dir=f"./") | |
return f"./{model_id}" | |
box_annotator = sv.BoxAnnotator() | |
category_dict = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E', 5: 'F', 6: 'G', 7: 'H', 8: 'I', | |
9: 'J', 10: 'K', 11: 'L', 12: 'M', 13: 'N', 14: 'O', 15: 'P', 16: 'Q', | |
17: 'R', 18: 'S', 19: 'T', 20: 'U', 21: 'V', 22: 'W', 23: 'X', 24: 'Y', 25: 'Z'} | |
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection): | |
""" | |
Performs ASL letter detection inference on an image or video using a YOLO model. | |
This function first downloads the specified YOLO model. It then applies the model | |
to the input, which can be either an image or a video. For images, it returns an | |
annotated image. For videos, it processes each frame and reconstructs an annotated video. | |
Error handling for missing inputs is included, returning blank outputs with messages. | |
Args: | |
input_type (str): Specifies the input type, either "Image" or "Video". | |
image (PIL.Image.Image or None): The input image if `input_type` is "Image". | |
None otherwise. | |
video (str or None): The path to the input video file if `input_type` is "Video". | |
None otherwise. | |
model_id (str): The filename of the YOLO model to use (e.g., 'yolo11n.pt'). | |
conf_threshold (float): The confidence threshold for filtering detections. | |
Detections with confidence below this value are discarded. | |
iou_threshold (float): The Intersection over Union (IoU) threshold for | |
Non-Maximum Suppression (NMS) to remove duplicate detections. | |
max_detection (int): The maximum number of detections to display. | |
Returns: | |
tuple: A tuple containing two elements: | |
- PIL.Image.Image or None: The annotated image if `input_type` was "Image", | |
otherwise None. | |
- str or None: The path to the annotated video file if `input_type` was "Video", | |
otherwise None. | |
""" | |
model_path = download_models(repo_id, model_id) | |
model = YOLO(model_path) | |
if input_type == "Image": | |
if image is None: | |
width, height = 640, 480 | |
blank_image = Image.new("RGB", (width, height), color="white") | |
draw = ImageDraw.Draw(blank_image) | |
message = "No image provided" | |
font = ImageFont.load_default(size=40) | |
bbox = draw.textbbox((0, 0), message, font=font) | |
text_width = bbox[2] - bbox[0] | |
text_height = bbox[3] - bbox[1] | |
text_x = (width - text_width) / 2 | |
text_y = (height - text_height) / 2 | |
draw.text((text_x, text_y), message, fill="black", font=font) | |
return blank_image, None | |
results = model(source=image, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0] | |
detections = sv.Detections.from_ultralytics(results) | |
labels = [ | |
f"{category_dict[class_id]} {confidence:.2f}" | |
for class_id, confidence in zip(detections.class_id, detections.confidence) | |
] | |
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) | |
return annotated_image, None | |
elif input_type == "Video": | |
if video is None: | |
width, height = 640, 480 | |
blank_image = Image.new("RGB", (width, height), color="white") | |
draw = ImageDraw.Draw(blank_image) | |
message = "No video provided" | |
font = ImageFont.load_default(size=40) | |
bbox = draw.textbbox((0, 0), message, font=font) | |
text_width = bbox[2] - bbox[0] | |
text_height = bbox[3] - bbox[1] | |
text_x = (width - text_width) / 2 | |
text_y = (height - text_height) / 2 | |
draw.text((text_x, text_y), message, fill="black", font=font) | |
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height)) | |
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR) | |
out.write(frame) | |
out.release() | |
return None, temp_video_file | |
cap = cv2.VideoCapture(video) | |
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25 | |
frames = [] | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
results = model(source=pil_frame, imgsz=640, iou=iou_threshold, conf=conf_threshold, verbose=False, max_det=max_detection)[0] | |
detections = sv.Detections.from_ultralytics(results) | |
labels = [ | |
f"{category_dict[class_id]} {confidence:.2f}" | |
for class_id, confidence in zip(detections.class_id, detections.confidence) | |
] | |
annotated_frame_array = box_annotator.annotate(np.array(pil_frame), detections=detections, labels=labels) | |
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_RGB2BGR) | |
frames.append(annotated_frame) | |
cap.release() | |
if not frames: | |
return None, None | |
height_out, width_out, _ = frames[0].shape | |
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out)) | |
for f in frames: | |
out.write(f) | |
out.release() | |
return None, temp_video_file | |
return None, None | |
def update_visibility(input_type): | |
""" | |
Adjusts the visibility of Gradio components based on the selected input type. | |
This function dynamically shows or hides the image and video input/output | |
components in the Gradio interface to ensure only relevant fields are visible. | |
Args: | |
input_type (str): The selected input type, either "Image" or "Video". | |
Returns: | |
tuple: A tuple of `gr.update` objects for the visibility of: | |
(image input, video input, image output, video output). | |
""" | |
if input_type == "Image": | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) | |
else: | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) | |
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection): | |
""" | |
Wrapper function for `yolo_inference` specifically for Gradio examples that use images. | |
This function simplifies the `yolo_inference` call for the `gr.Examples` component, | |
ensuring only image-based inference is performed for predefined examples. | |
Args: | |
image (PIL.Image.Image): The input image for the example. | |
model_id (str): The identifier of the YOLO model to use. | |
conf_threshold (float): The confidence threshold. | |
iou_threshold (float): The IoU threshold. | |
max_detection (int): The maximum number of detections. | |
Returns: | |
PIL.Image.Image or None: The annotated image. Returns None if no image is processed. | |
""" | |
annotated_image, _ = yolo_inference( | |
input_type="Image", | |
image=image, | |
video=None, | |
model_id=model_id, | |
conf_threshold=conf_threshold, | |
iou_threshold=iou_threshold, | |
max_detection=max_detection | |
) | |
return annotated_image | |
with gr.Blocks(title="ASL Letter Detector") as app: | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
YOLO Powered ASL(American Sign Language) Letter Detector PSA: It can't detect J or Z | |
</h1> | |
""") | |
gr.Markdown("Upload an image or video for ASL letter detection using a YOLO model.") | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(type="pil", label="Image Input", interactive=True, visible=True) | |
video = gr.Video(label="Video Input", interactive=True, visible=False) | |
input_type = gr.Radio( | |
choices=["Image", "Video"], | |
value="Image", | |
label="Input Type", | |
) | |
model_id = gr.Dropdown( | |
label="Model", | |
choices=model_filenames, | |
value=model_filenames[0] if model_filenames else "", | |
) | |
conf_threshold = gr.Slider( | |
label="Confidence Threshold", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.45, | |
) | |
iou_threshold = gr.Slider( | |
label="IoU Threshold", | |
minimum=0.1, | |
maximum=1.0, | |
step=0.1, | |
value=0.7, | |
) | |
max_detection = gr.Slider( | |
label="Max Detection", | |
minimum=1, | |
step=1, | |
value=1, | |
) | |
yolov_infer = gr.Button(value="Detect Objects") | |
with gr.Column(): | |
output_image = gr.Image(type="pil", label="Annotated Image", interactive=False, visible=True) | |
output_video = gr.Video(label="Annotated Video", interactive=False, visible=False) | |
gr.DeepLinkButton() | |
input_type.change( | |
fn=update_visibility, | |
inputs=input_type, | |
outputs=[image, video, output_image, output_video], | |
) | |
yolov_infer.click( | |
fn=yolo_inference, | |
inputs=[ | |
input_type, | |
image, | |
video, | |
model_id, | |
conf_threshold, | |
iou_threshold, | |
max_detection, | |
], | |
outputs=[output_image, output_video], | |
) | |
gr.Examples( | |
examples=[ | |
["b.jpg", "yolo11x.pt", 0.45, 0.7, 1], | |
["a.jpg", "yolo11s.pt", 0.45, 0.7, 1], | |
["y.jpg", "yolo11m.pt", 0.45, 0.7, 1], | |
], | |
fn=yolo_inference_for_examples, | |
inputs=[ | |
image, | |
model_id, | |
conf_threshold, | |
iou_threshold, | |
max_detection, | |
], | |
outputs=[output_image], | |
cache_examples=True, | |
label="Examples (Images)", | |
) | |
app.launch(mcp_server=True) |