Spaces:
Running
Running
Adjust template for embeddings
Browse files- app.py +22 -2
- utils/notebook_utils.py +107 -4
app.py
CHANGED
|
@@ -15,6 +15,8 @@ from dotenv import load_dotenv
|
|
| 15 |
import os
|
| 16 |
|
| 17 |
# TODOS:
|
|
|
|
|
|
|
| 18 |
# Add template for RAG and embeddings
|
| 19 |
|
| 20 |
load_dotenv()
|
|
@@ -91,6 +93,19 @@ def generate_rag_cells(dataset_id):
|
|
| 91 |
yield from generate_cells(dataset_id, rag_cells, "rag")
|
| 92 |
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
def generate_embedding_cells(dataset_id):
|
| 95 |
yield from generate_cells(dataset_id, embeggins_cells, "embeddings")
|
| 96 |
|
|
@@ -143,9 +158,10 @@ def generate_cells(dataset_id, cells, notebook_type="eda"):
|
|
| 143 |
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
|
| 144 |
features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
|
| 145 |
|
|
|
|
| 146 |
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
|
| 147 |
-
wildcards = ["{dataset_name}", "{first_code}", "{html_code}"]
|
| 148 |
-
replacements = [dataset_id, first_code, html_code]
|
| 149 |
has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0
|
| 150 |
has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0
|
| 151 |
cells = replace_wildcards(
|
|
@@ -248,4 +264,8 @@ with gr.Blocks(fill_height=True, fill_width=True) as demo:
|
|
| 248 |
outputs=[code_component, go_to_notebook],
|
| 249 |
)
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
demo.launch()
|
|
|
|
| 15 |
import os
|
| 16 |
|
| 17 |
# TODOS:
|
| 18 |
+
# Validate dataset type for type before generating the notebook
|
| 19 |
+
# Add template for training
|
| 20 |
# Add template for RAG and embeddings
|
| 21 |
|
| 22 |
load_dotenv()
|
|
|
|
| 93 |
yield from generate_cells(dataset_id, rag_cells, "rag")
|
| 94 |
|
| 95 |
|
| 96 |
+
def longest_string_column(df):
|
| 97 |
+
longest_col = None
|
| 98 |
+
max_length = 0
|
| 99 |
+
|
| 100 |
+
for col in df.select_dtypes(include=["object", "string"]):
|
| 101 |
+
max_col_length = df[col].str.len().max()
|
| 102 |
+
if max_col_length > max_length:
|
| 103 |
+
max_length = max_col_length
|
| 104 |
+
longest_col = col
|
| 105 |
+
|
| 106 |
+
return longest_col
|
| 107 |
+
|
| 108 |
+
|
| 109 |
def generate_embedding_cells(dataset_id):
|
| 110 |
yield from generate_cells(dataset_id, embeggins_cells, "embeddings")
|
| 111 |
|
|
|
|
| 158 |
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
|
| 159 |
features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
|
| 160 |
|
| 161 |
+
longest_col = longest_string_column(df)
|
| 162 |
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
|
| 163 |
+
wildcards = ["{dataset_name}", "{first_code}", "{html_code}", "{longest_col}"]
|
| 164 |
+
replacements = [dataset_id, first_code, html_code, longest_col]
|
| 165 |
has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0
|
| 166 |
has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0
|
| 167 |
cells = replace_wildcards(
|
|
|
|
| 264 |
outputs=[code_component, go_to_notebook],
|
| 265 |
)
|
| 266 |
|
| 267 |
+
gr.Markdown(
|
| 268 |
+
"🚧 Note: Some code may not be compatible with datasets that contain binary data or complex structures. 🚧"
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
demo.launch()
|
utils/notebook_utils.py
CHANGED
|
@@ -31,9 +31,112 @@ rag_cells = [
|
|
| 31 |
embeggins_cells = [
|
| 32 |
{
|
| 33 |
"cell_type": "markdown",
|
| 34 |
-
"source": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
},
|
| 36 |
-
{"cell_type": "code", "source": ""},
|
| 37 |
]
|
| 38 |
|
| 39 |
eda_cells = [
|
|
@@ -52,7 +155,7 @@ eda_cells = [
|
|
| 52 |
{
|
| 53 |
"cell_type": "code",
|
| 54 |
"source": """
|
| 55 |
-
#
|
| 56 |
!pip install pandas matplotlib seaborn
|
| 57 |
""",
|
| 58 |
},
|
|
@@ -67,7 +170,7 @@ import seaborn as sns
|
|
| 67 |
{
|
| 68 |
"cell_type": "code",
|
| 69 |
"source": """
|
| 70 |
-
#
|
| 71 |
{first_code}
|
| 72 |
""",
|
| 73 |
},
|
|
|
|
| 31 |
embeggins_cells = [
|
| 32 |
{
|
| 33 |
"cell_type": "markdown",
|
| 34 |
+
"source": """
|
| 35 |
+
---
|
| 36 |
+
# **Embeddings Notebook for {dataset_name} dataset**
|
| 37 |
+
---
|
| 38 |
+
""",
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "markdown",
|
| 42 |
+
"source": "## 1. Setup necessary libraries and load the dataset",
|
| 43 |
+
},
|
| 44 |
+
{
|
| 45 |
+
"cell_type": "code",
|
| 46 |
+
"source": """
|
| 47 |
+
# Install and import necessary libraries.
|
| 48 |
+
!pip install pandas sentence-transformers faiss-cpu
|
| 49 |
+
""",
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "code",
|
| 53 |
+
"source": """
|
| 54 |
+
import pandas as pd
|
| 55 |
+
from sentence_transformers import SentenceTransformer
|
| 56 |
+
import faiss
|
| 57 |
+
""",
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"cell_type": "code",
|
| 61 |
+
"source": """
|
| 62 |
+
# Load the dataset as a DataFrame
|
| 63 |
+
{first_code}
|
| 64 |
+
""",
|
| 65 |
+
},
|
| 66 |
+
{
|
| 67 |
+
"cell_type": "code",
|
| 68 |
+
"source": """
|
| 69 |
+
# Specify the column name that contains the text data to generate embeddings
|
| 70 |
+
column_to_generate_embeddings = '{longest_col}'
|
| 71 |
+
""",
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "markdown",
|
| 75 |
+
"source": "## 2. Loading embedding model and creating FAISS index",
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"source": """
|
| 80 |
+
# Remove duplicate entries based on the specified column
|
| 81 |
+
df = df.drop_duplicates(subset=column_to_generate_embeddings)
|
| 82 |
+
""",
|
| 83 |
+
},
|
| 84 |
+
{
|
| 85 |
+
"cell_type": "code",
|
| 86 |
+
"source": """
|
| 87 |
+
# Convert the column data to a list of text entries
|
| 88 |
+
text_list = df[column_to_generate_embeddings].tolist()
|
| 89 |
+
""",
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"cell_type": "code",
|
| 93 |
+
"source": """
|
| 94 |
+
# Specify the embedding model you want to use
|
| 95 |
+
model = SentenceTransformer('distiluse-base-multilingual-cased')
|
| 96 |
+
""",
|
| 97 |
+
},
|
| 98 |
+
{
|
| 99 |
+
"cell_type": "code",
|
| 100 |
+
"source": """
|
| 101 |
+
vectors = model.encode(text_list)
|
| 102 |
+
vector_dimension = vectors.shape[1]
|
| 103 |
+
|
| 104 |
+
# Initialize the FAISS index with the appropriate dimension (384 for this model)
|
| 105 |
+
index = faiss.IndexFlatL2(vector_dimension)
|
| 106 |
+
|
| 107 |
+
# Encode the text list into embeddings and add them to the FAISS index
|
| 108 |
+
index.add(vectors)
|
| 109 |
+
""",
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"cell_type": "markdown",
|
| 113 |
+
"source": "## 3. Perform a text search",
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"source": """
|
| 118 |
+
# Specify the text you want to search for in the list
|
| 119 |
+
text_to_search = text_list[0]
|
| 120 |
+
print(f"Text to search: {text_to_search}")
|
| 121 |
+
""",
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"source": """
|
| 126 |
+
# Generate the embedding for the search query
|
| 127 |
+
query_embedding = model.encode([text_to_search])
|
| 128 |
+
""",
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "code",
|
| 132 |
+
"source": """
|
| 133 |
+
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
|
| 134 |
+
D, I = index.search(query_embedding, k=10)
|
| 135 |
+
|
| 136 |
+
# Print the similar documents found
|
| 137 |
+
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
|
| 138 |
+
""",
|
| 139 |
},
|
|
|
|
| 140 |
]
|
| 141 |
|
| 142 |
eda_cells = [
|
|
|
|
| 155 |
{
|
| 156 |
"cell_type": "code",
|
| 157 |
"source": """
|
| 158 |
+
# Install and import necessary libraries.
|
| 159 |
!pip install pandas matplotlib seaborn
|
| 160 |
""",
|
| 161 |
},
|
|
|
|
| 170 |
{
|
| 171 |
"cell_type": "code",
|
| 172 |
"source": """
|
| 173 |
+
# Load the dataset as a DataFrame
|
| 174 |
{first_code}
|
| 175 |
""",
|
| 176 |
},
|