Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Adjust template for embeddings
Browse files- app.py +22 -2
- utils/notebook_utils.py +107 -4
    	
        app.py
    CHANGED
    
    | @@ -15,6 +15,8 @@ from dotenv import load_dotenv | |
| 15 | 
             
            import os
         | 
| 16 |  | 
| 17 | 
             
            # TODOS:
         | 
|  | |
|  | |
| 18 | 
             
            # Add template for RAG and embeddings
         | 
| 19 |  | 
| 20 | 
             
            load_dotenv()
         | 
| @@ -91,6 +93,19 @@ def generate_rag_cells(dataset_id): | |
| 91 | 
             
                yield from generate_cells(dataset_id, rag_cells, "rag")
         | 
| 92 |  | 
| 93 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 94 | 
             
            def generate_embedding_cells(dataset_id):
         | 
| 95 | 
             
                yield from generate_cells(dataset_id, embeggins_cells, "embeddings")
         | 
| 96 |  | 
| @@ -143,9 +158,10 @@ def generate_cells(dataset_id, cells, notebook_type="eda"): | |
| 143 | 
             
                first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
         | 
| 144 | 
             
                features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
         | 
| 145 |  | 
|  | |
| 146 | 
             
                html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
         | 
| 147 | 
            -
                wildcards = ["{dataset_name}", "{first_code}", "{html_code}"]
         | 
| 148 | 
            -
                replacements = [dataset_id, first_code, html_code]
         | 
| 149 | 
             
                has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0
         | 
| 150 | 
             
                has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0
         | 
| 151 | 
             
                cells = replace_wildcards(
         | 
| @@ -248,4 +264,8 @@ with gr.Blocks(fill_height=True, fill_width=True) as demo: | |
| 248 | 
             
                    outputs=[code_component, go_to_notebook],
         | 
| 249 | 
             
                )
         | 
| 250 |  | 
|  | |
|  | |
|  | |
|  | |
| 251 | 
             
            demo.launch()
         | 
|  | |
| 15 | 
             
            import os
         | 
| 16 |  | 
| 17 | 
             
            # TODOS:
         | 
| 18 | 
            +
            # Validate dataset type for type before generating the notebook
         | 
| 19 | 
            +
            # Add template for training
         | 
| 20 | 
             
            # Add template for RAG and embeddings
         | 
| 21 |  | 
| 22 | 
             
            load_dotenv()
         | 
|  | |
| 93 | 
             
                yield from generate_cells(dataset_id, rag_cells, "rag")
         | 
| 94 |  | 
| 95 |  | 
| 96 | 
            +
            def longest_string_column(df):
         | 
| 97 | 
            +
                longest_col = None
         | 
| 98 | 
            +
                max_length = 0
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                for col in df.select_dtypes(include=["object", "string"]):
         | 
| 101 | 
            +
                    max_col_length = df[col].str.len().max()
         | 
| 102 | 
            +
                    if max_col_length > max_length:
         | 
| 103 | 
            +
                        max_length = max_col_length
         | 
| 104 | 
            +
                        longest_col = col
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                return longest_col
         | 
| 107 | 
            +
             | 
| 108 | 
            +
             | 
| 109 | 
             
            def generate_embedding_cells(dataset_id):
         | 
| 110 | 
             
                yield from generate_cells(dataset_id, embeggins_cells, "embeddings")
         | 
| 111 |  | 
|  | |
| 158 | 
             
                first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
         | 
| 159 | 
             
                features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
         | 
| 160 |  | 
| 161 | 
            +
                longest_col = longest_string_column(df)
         | 
| 162 | 
             
                html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>"
         | 
| 163 | 
            +
                wildcards = ["{dataset_name}", "{first_code}", "{html_code}", "{longest_col}"]
         | 
| 164 | 
            +
                replacements = [dataset_id, first_code, html_code, longest_col]
         | 
| 165 | 
             
                has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0
         | 
| 166 | 
             
                has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0
         | 
| 167 | 
             
                cells = replace_wildcards(
         | 
|  | |
| 264 | 
             
                    outputs=[code_component, go_to_notebook],
         | 
| 265 | 
             
                )
         | 
| 266 |  | 
| 267 | 
            +
                gr.Markdown(
         | 
| 268 | 
            +
                    "🚧 Note: Some code may not be compatible with datasets that contain binary data or complex structures. 🚧"
         | 
| 269 | 
            +
                )
         | 
| 270 | 
            +
             | 
| 271 | 
             
            demo.launch()
         | 
    	
        utils/notebook_utils.py
    CHANGED
    
    | @@ -31,9 +31,112 @@ rag_cells = [ | |
| 31 | 
             
            embeggins_cells = [
         | 
| 32 | 
             
                {
         | 
| 33 | 
             
                    "cell_type": "markdown",
         | 
| 34 | 
            -
                    "source": " | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 35 | 
             
                },
         | 
| 36 | 
            -
                {"cell_type": "code", "source": ""},
         | 
| 37 | 
             
            ]
         | 
| 38 |  | 
| 39 | 
             
            eda_cells = [
         | 
| @@ -52,7 +155,7 @@ eda_cells = [ | |
| 52 | 
             
                {
         | 
| 53 | 
             
                    "cell_type": "code",
         | 
| 54 | 
             
                    "source": """
         | 
| 55 | 
            -
            #  | 
| 56 | 
             
            !pip install pandas matplotlib seaborn
         | 
| 57 | 
             
            """,
         | 
| 58 | 
             
                },
         | 
| @@ -67,7 +170,7 @@ import seaborn as sns | |
| 67 | 
             
                {
         | 
| 68 | 
             
                    "cell_type": "code",
         | 
| 69 | 
             
                    "source": """
         | 
| 70 | 
            -
            #  | 
| 71 | 
             
            {first_code}
         | 
| 72 | 
             
            """,
         | 
| 73 | 
             
                },
         | 
|  | |
| 31 | 
             
            embeggins_cells = [
         | 
| 32 | 
             
                {
         | 
| 33 | 
             
                    "cell_type": "markdown",
         | 
| 34 | 
            +
                    "source": """
         | 
| 35 | 
            +
            ---
         | 
| 36 | 
            +
            # **Embeddings Notebook for {dataset_name} dataset**
         | 
| 37 | 
            +
            ---
         | 
| 38 | 
            +
            """,
         | 
| 39 | 
            +
                },
         | 
| 40 | 
            +
                {
         | 
| 41 | 
            +
                    "cell_type": "markdown",
         | 
| 42 | 
            +
                    "source": "## 1. Setup necessary libraries and load the dataset",
         | 
| 43 | 
            +
                },
         | 
| 44 | 
            +
                {
         | 
| 45 | 
            +
                    "cell_type": "code",
         | 
| 46 | 
            +
                    "source": """
         | 
| 47 | 
            +
            # Install and import necessary libraries.
         | 
| 48 | 
            +
            !pip install pandas sentence-transformers faiss-cpu
         | 
| 49 | 
            +
            """,
         | 
| 50 | 
            +
                },
         | 
| 51 | 
            +
                {
         | 
| 52 | 
            +
                    "cell_type": "code",
         | 
| 53 | 
            +
                    "source": """
         | 
| 54 | 
            +
            import pandas as pd
         | 
| 55 | 
            +
            from sentence_transformers import SentenceTransformer
         | 
| 56 | 
            +
            import faiss
         | 
| 57 | 
            +
            """,
         | 
| 58 | 
            +
                },
         | 
| 59 | 
            +
                {
         | 
| 60 | 
            +
                    "cell_type": "code",
         | 
| 61 | 
            +
                    "source": """
         | 
| 62 | 
            +
            # Load the dataset as a DataFrame
         | 
| 63 | 
            +
            {first_code}
         | 
| 64 | 
            +
            """,
         | 
| 65 | 
            +
                },
         | 
| 66 | 
            +
                {
         | 
| 67 | 
            +
                    "cell_type": "code",
         | 
| 68 | 
            +
                    "source": """
         | 
| 69 | 
            +
            # Specify the column name that contains the text data to generate embeddings
         | 
| 70 | 
            +
            column_to_generate_embeddings = '{longest_col}'
         | 
| 71 | 
            +
            """,
         | 
| 72 | 
            +
                },
         | 
| 73 | 
            +
                {
         | 
| 74 | 
            +
                    "cell_type": "markdown",
         | 
| 75 | 
            +
                    "source": "## 2. Loading embedding model and creating FAISS index",
         | 
| 76 | 
            +
                },
         | 
| 77 | 
            +
                {
         | 
| 78 | 
            +
                    "cell_type": "code",
         | 
| 79 | 
            +
                    "source": """
         | 
| 80 | 
            +
            # Remove duplicate entries based on the specified column
         | 
| 81 | 
            +
            df = df.drop_duplicates(subset=column_to_generate_embeddings)
         | 
| 82 | 
            +
            """,
         | 
| 83 | 
            +
                },
         | 
| 84 | 
            +
                {
         | 
| 85 | 
            +
                    "cell_type": "code",
         | 
| 86 | 
            +
                    "source": """
         | 
| 87 | 
            +
            # Convert the column data to a list of text entries
         | 
| 88 | 
            +
            text_list = df[column_to_generate_embeddings].tolist()
         | 
| 89 | 
            +
            """,
         | 
| 90 | 
            +
                },
         | 
| 91 | 
            +
                {
         | 
| 92 | 
            +
                    "cell_type": "code",
         | 
| 93 | 
            +
                    "source": """
         | 
| 94 | 
            +
            # Specify the embedding model you want to use
         | 
| 95 | 
            +
            model = SentenceTransformer('distiluse-base-multilingual-cased')
         | 
| 96 | 
            +
            """,
         | 
| 97 | 
            +
                },
         | 
| 98 | 
            +
                {
         | 
| 99 | 
            +
                    "cell_type": "code",
         | 
| 100 | 
            +
                    "source": """
         | 
| 101 | 
            +
            vectors = model.encode(text_list)
         | 
| 102 | 
            +
            vector_dimension = vectors.shape[1]
         | 
| 103 | 
            +
             | 
| 104 | 
            +
            # Initialize the FAISS index with the appropriate dimension (384 for this model)
         | 
| 105 | 
            +
            index = faiss.IndexFlatL2(vector_dimension)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            # Encode the text list into embeddings and add them to the FAISS index
         | 
| 108 | 
            +
            index.add(vectors)
         | 
| 109 | 
            +
            """,
         | 
| 110 | 
            +
                },
         | 
| 111 | 
            +
                {
         | 
| 112 | 
            +
                    "cell_type": "markdown",
         | 
| 113 | 
            +
                    "source": "## 3. Perform a text search",
         | 
| 114 | 
            +
                },
         | 
| 115 | 
            +
                {
         | 
| 116 | 
            +
                    "cell_type": "code",
         | 
| 117 | 
            +
                    "source": """
         | 
| 118 | 
            +
            # Specify the text you want to search for in the list
         | 
| 119 | 
            +
            text_to_search = text_list[0]
         | 
| 120 | 
            +
            print(f"Text to search: {text_to_search}")
         | 
| 121 | 
            +
            """,
         | 
| 122 | 
            +
                },
         | 
| 123 | 
            +
                {
         | 
| 124 | 
            +
                    "cell_type": "code",
         | 
| 125 | 
            +
                    "source": """
         | 
| 126 | 
            +
            # Generate the embedding for the search query
         | 
| 127 | 
            +
            query_embedding = model.encode([text_to_search])
         | 
| 128 | 
            +
            """,
         | 
| 129 | 
            +
                },
         | 
| 130 | 
            +
                {
         | 
| 131 | 
            +
                    "cell_type": "code",
         | 
| 132 | 
            +
                    "source": """
         | 
| 133 | 
            +
            # Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
         | 
| 134 | 
            +
            D, I = index.search(query_embedding, k=10)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            # Print the similar documents found
         | 
| 137 | 
            +
            print(f"Similar documents: {[text_list[i] for i in I[0]]}")
         | 
| 138 | 
            +
            """,
         | 
| 139 | 
             
                },
         | 
|  | |
| 140 | 
             
            ]
         | 
| 141 |  | 
| 142 | 
             
            eda_cells = [
         | 
|  | |
| 155 | 
             
                {
         | 
| 156 | 
             
                    "cell_type": "code",
         | 
| 157 | 
             
                    "source": """
         | 
| 158 | 
            +
            # Install and import necessary libraries.
         | 
| 159 | 
             
            !pip install pandas matplotlib seaborn
         | 
| 160 | 
             
            """,
         | 
| 161 | 
             
                },
         | 
|  | |
| 170 | 
             
                {
         | 
| 171 | 
             
                    "cell_type": "code",
         | 
| 172 | 
             
                    "source": """
         | 
| 173 | 
            +
            # Load the dataset as a DataFrame
         | 
| 174 | 
             
            {first_code}
         | 
| 175 | 
             
            """,
         | 
| 176 | 
             
                },
         | 
