Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
8453f63
1
Parent(s):
de46ee3
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,9 @@ import argparse
|
|
| 2 |
import glob
|
| 3 |
import os.path
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import numpy as np
|
| 7 |
import onnxruntime as rt
|
|
@@ -13,7 +16,54 @@ import TMIDIX
|
|
| 13 |
|
| 14 |
in_space = os.getenv("SYSTEM") == "spaces"
|
| 15 |
|
| 16 |
-
providers = ['
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def load_javascript(dir="javascript"):
|
| 19 |
scripts_list = glob.glob(f"{dir}/*.js")
|
|
@@ -55,7 +105,7 @@ if __name__ == "__main__":
|
|
| 55 |
opt = parser.parse_args()
|
| 56 |
|
| 57 |
|
| 58 |
-
providers = ['
|
| 59 |
|
| 60 |
session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=providers)
|
| 61 |
|
|
|
|
| 2 |
import glob
|
| 3 |
import os.path
|
| 4 |
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
import gradio as gr
|
| 9 |
import numpy as np
|
| 10 |
import onnxruntime as rt
|
|
|
|
| 16 |
|
| 17 |
in_space = os.getenv("SYSTEM") == "spaces"
|
| 18 |
|
| 19 |
+
providers = ['CPUExecutionProvider']
|
| 20 |
+
|
| 21 |
+
#=================================================================================================
|
| 22 |
+
|
| 23 |
+
def generate(
|
| 24 |
+
start_tokens,
|
| 25 |
+
seq_len,
|
| 26 |
+
max_seq_len = 2048,
|
| 27 |
+
temperature = 0.9,
|
| 28 |
+
verbose=True,
|
| 29 |
+
return_prime=False,
|
| 30 |
+
):
|
| 31 |
+
|
| 32 |
+
out = torch.LongTensor([start_tokens])
|
| 33 |
+
|
| 34 |
+
st = len(start_tokens)
|
| 35 |
+
|
| 36 |
+
if verbose:
|
| 37 |
+
print("Generating sequence of max length:", seq_len)
|
| 38 |
+
|
| 39 |
+
for s in range(seq_len):
|
| 40 |
+
x = out[:, -max_seq_len:]
|
| 41 |
+
|
| 42 |
+
torch_in = x.tolist()[0]
|
| 43 |
+
|
| 44 |
+
logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1]
|
| 45 |
+
|
| 46 |
+
filtered_logits = logits
|
| 47 |
+
|
| 48 |
+
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
| 49 |
+
|
| 50 |
+
sample = torch.multinomial(probs, 1)
|
| 51 |
+
|
| 52 |
+
out = torch.cat((out, sample), dim=-1)
|
| 53 |
+
|
| 54 |
+
if verbose:
|
| 55 |
+
if s % 32 == 0:
|
| 56 |
+
print(s, '/', seq_len)
|
| 57 |
+
|
| 58 |
+
if return_prime:
|
| 59 |
+
return out[:, :]
|
| 60 |
+
|
| 61 |
+
else:
|
| 62 |
+
return out[:, st:]
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
#=================================================================================================
|
| 66 |
+
|
| 67 |
|
| 68 |
def load_javascript(dir="javascript"):
|
| 69 |
scripts_list = glob.glob(f"{dir}/*.js")
|
|
|
|
| 105 |
opt = parser.parse_args()
|
| 106 |
|
| 107 |
|
| 108 |
+
providers = ['CPUExecutionProvider']
|
| 109 |
|
| 110 |
session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=providers)
|
| 111 |
|