import numpy as np import torch class MergeLayer(torch.nn.Module): def __init__(self, dim1, dim2, dim3, dim4): super().__init__() self.fc1 = torch.nn.Linear(dim1 + dim2, dim3) self.fc2 = torch.nn.Linear(dim3, dim4) self.act = torch.nn.ReLU() torch.nn.init.xavier_normal_(self.fc1.weight) torch.nn.init.xavier_normal_(self.fc2.weight) def forward(self, x1, x2): x = torch.cat([x1, x2], dim=1) h = self.act(self.fc1(x)) return self.fc2(h) class MLP(torch.nn.Module): def __init__(self, dim, drop=0.3): super().__init__() self.fc_1 = torch.nn.Linear(dim, 80) self.fc_2 = torch.nn.Linear(80, 10) self.fc_3 = torch.nn.Linear(10, 1) self.act = torch.nn.ReLU() self.dropout = torch.nn.Dropout(p=drop, inplace=False) def forward(self, x): x = self.act(self.fc_1(x)) x = self.dropout(x) x = self.act(self.fc_2(x)) x = self.dropout(x) return self.fc_3(x).squeeze(dim=1) class EarlyStopMonitor(object): def __init__(self, max_round=3, higher_better=True, tolerance=1e-10): self.max_round = max_round self.num_round = 0 self.epoch_count = 0 self.best_epoch = 0 self.last_best = None self.higher_better = higher_better self.tolerance = tolerance def early_stop_check(self, curr_val): if not self.higher_better: curr_val *= -1 if self.last_best is None: self.last_best = curr_val elif (curr_val - self.last_best) / np.abs(self.last_best) > self.tolerance: self.last_best = curr_val self.num_round = 0 self.best_epoch = self.epoch_count else: self.num_round += 1 self.epoch_count += 1 return self.num_round >= self.max_round class RandEdgeSampler(object): def __init__(self, src_list, dst_list, seed=None): self.seed = None self.src_list = np.unique(src_list) self.dst_list = np.unique(dst_list) if seed is not None: self.seed = seed self.random_state = np.random.RandomState(self.seed) def sample(self, size): if self.seed is None: src_index = np.random.randint(0, len(self.src_list), size) dst_index = np.random.randint(0, len(self.dst_list), size) else: src_index = self.random_state.randint(0, len(self.src_list), size) dst_index = self.random_state.randint(0, len(self.dst_list), size) return self.src_list[src_index], self.dst_list[dst_index] def reset_random_state(self): self.random_state = np.random.RandomState(self.seed) def get_neighbor_finder(data, uniform, max_node_idx=None): max_node_idx = max(data.sources.max(), data.destinations.max()) if max_node_idx is None else max_node_idx adj_list = [[] for _ in range(max_node_idx + 1)] for source, destination, edge_idx, timestamp in zip(data.sources, data.destinations, data.edge_idxs, data.timestamps): adj_list[source].append((destination, edge_idx, timestamp)) adj_list[destination].append((source, edge_idx, timestamp)) return NeighborFinder(adj_list, uniform=uniform) class NeighborFinder: def __init__(self, adj_list, uniform=False, seed=None): self.node_to_neighbors = [] self.node_to_edge_idxs = [] self.node_to_edge_timestamps = [] for neighbors in adj_list: # Neighbors is a list of tuples (neighbor, edge_idx, timestamp) # We sort the list based on timestamp sorted_neighhbors = sorted(neighbors, key=lambda x: x[2]) self.node_to_neighbors.append(np.array([x[0] for x in sorted_neighhbors])) self.node_to_edge_idxs.append(np.array([x[1] for x in sorted_neighhbors])) self.node_to_edge_timestamps.append(np.array([x[2] for x in sorted_neighhbors])) self.uniform = uniform if seed is not None: self.seed = seed self.random_state = np.random.RandomState(self.seed) def find_before(self, src_idx, cut_time): """ Extracts all the interactions happening before cut_time for user src_idx in the overall interaction graph. The returned interactions are sorted by time. Returns 3 lists: neighbors, edge_idxs, timestamps """ i = np.searchsorted(self.node_to_edge_timestamps[src_idx], cut_time) return self.node_to_neighbors[src_idx][:i], self.node_to_edge_idxs[src_idx][:i], self.node_to_edge_timestamps[src_idx][:i] def get_temporal_neighbor(self, source_nodes, timestamps, n_neighbors=20): """ Given a list of users ids and relative cut times, extracts a sampled temporal neighborhood of each user in the list. Params ------ src_idx_l: List[int] cut_time_l: List[float], num_neighbors: int """ assert (len(source_nodes) == len(timestamps)) tmp_n_neighbors = n_neighbors if n_neighbors > 0 else 1 # NB! All interactions described in these matrices are sorted in each row by time neighbors = np.zeros((len(source_nodes), tmp_n_neighbors)).astype( np.int32) # each entry in position (i,j) represent the id of the item targeted by user src_idx_l[i] with an interaction happening before cut_time_l[i] edge_times = np.zeros((len(source_nodes), tmp_n_neighbors)).astype( np.float32) # each entry in position (i,j) represent the timestamp of an interaction between user src_idx_l[i] and item neighbors[i,j] happening before cut_time_l[i] edge_idxs = np.zeros((len(source_nodes), tmp_n_neighbors)).astype( np.int32) # each entry in position (i,j) represent the interaction index of an interaction between user src_idx_l[i] and item neighbors[i,j] happening before cut_time_l[i] for i, (source_node, timestamp) in enumerate(zip(source_nodes, timestamps)): source_neighbors, source_edge_idxs, source_edge_times = self.find_before(source_node, timestamp) # extracts all neighbors, interactions indexes and timestamps of all interactions of user source_node happening before cut_time if len(source_neighbors) > 0 and n_neighbors > 0: if self.uniform: # if we are applying uniform sampling, shuffles the data above before sampling sampled_idx = np.random.randint(0, len(source_neighbors), n_neighbors) neighbors[i, :] = source_neighbors[sampled_idx] edge_times[i, :] = source_edge_times[sampled_idx] edge_idxs[i, :] = source_edge_idxs[sampled_idx] # re-sort based on time pos = edge_times[i, :].argsort() neighbors[i, :] = neighbors[i, :][pos] edge_times[i, :] = edge_times[i, :][pos] edge_idxs[i, :] = edge_idxs[i, :][pos] else: # Take most recent interactions source_edge_times = source_edge_times[-n_neighbors:] source_neighbors = source_neighbors[-n_neighbors:] source_edge_idxs = source_edge_idxs[-n_neighbors:] assert (len(source_neighbors) <= n_neighbors) assert (len(source_edge_times) <= n_neighbors) assert (len(source_edge_idxs) <= n_neighbors) neighbors[i, n_neighbors - len(source_neighbors):] = source_neighbors edge_times[i, n_neighbors - len(source_edge_times):] = source_edge_times edge_idxs[i, n_neighbors - len(source_edge_idxs):] = source_edge_idxs return neighbors, edge_idxs, edge_times