Spaces:
Running
Running
Upload 3 files
Browse files- app.py +53 -0
- requirements.txt +4 -0
- tgn-attn-wikipedia.pth +3 -0
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from utils.data_processing import get_data
|
6 |
+
from modules.tgn import TGN
|
7 |
+
|
8 |
+
# Load data
|
9 |
+
node_features, edge_features, full_data, train_data, val_data, test_data, \
|
10 |
+
new_node_val_data, new_node_test_data = get_data('wikipedia')
|
11 |
+
|
12 |
+
# Initialize model (must match training args)
|
13 |
+
tgn = TGN(
|
14 |
+
raw_message_dim=edge_features.shape[1],
|
15 |
+
memory_dim=172,
|
16 |
+
message_dim=100,
|
17 |
+
memory_update_at_end=False,
|
18 |
+
embedding_module_type='graph_attention',
|
19 |
+
message_function='identity',
|
20 |
+
memory_updater_type='gru',
|
21 |
+
n_heads=2,
|
22 |
+
dropout=0.1,
|
23 |
+
n_layers=1,
|
24 |
+
n_neighbors=10,
|
25 |
+
aggregator_type='last',
|
26 |
+
edge_features=edge_features,
|
27 |
+
node_features=node_features,
|
28 |
+
device='cpu',
|
29 |
+
use_memory=True,
|
30 |
+
)
|
31 |
+
tgn.load_state_dict(torch.load("tgn-attn-wikipedia.pth", map_location="cpu"))
|
32 |
+
tgn.eval()
|
33 |
+
|
34 |
+
def predict(u_id, i_id, timestamp):
|
35 |
+
u = np.array([int(u_id)])
|
36 |
+
i = np.array([int(i_id)])
|
37 |
+
ts = np.array([float(timestamp)])
|
38 |
+
prob = tgn.predict_edge_probabilities(u, i, ts)
|
39 |
+
return f"Predicted interaction probability: {prob[0]:.4f}"
|
40 |
+
|
41 |
+
demo = gr.Interface(
|
42 |
+
fn=predict,
|
43 |
+
inputs=[
|
44 |
+
gr.Number(label="Source Node ID"),
|
45 |
+
gr.Number(label="Destination Node ID"),
|
46 |
+
gr.Number(label="Timestamp"),
|
47 |
+
],
|
48 |
+
outputs="text",
|
49 |
+
title="🧠 TGN Playground (Wikipedia)",
|
50 |
+
description="Enter node IDs and timestamp to predict future interaction probability using Temporal Graph Networks (TGN).",
|
51 |
+
)
|
52 |
+
|
53 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
gradio
|
tgn-attn-wikipedia.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e16adc3ca08a3217d24a7bda96d52623c15e52e7dc20378a7e1e7ce9f9a2eda
|
3 |
+
size 8108482
|