Spaces:
Running
Running
import os | |
import cv2 | |
import gradio as gr | |
import mediapipe as mp | |
import numpy as np | |
from PIL import Image | |
from gradio_client import Client, handle_file | |
# Set up paths | |
example_path = os.path.join(os.path.dirname(__file__), 'example') | |
garm_list = os.listdir(os.path.join(example_path, "cloth")) | |
garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] | |
human_list = os.listdir(os.path.join(example_path, "human")) | |
human_list_path = [os.path.join(example_path, "human", human) for human in human_list] | |
# Initialize MediaPipe Pose | |
mp_pose = mp.solutions.pose | |
pose = mp_pose.Pose(static_image_mode=True) | |
mp_drawing = mp.solutions.drawing_utils | |
mp_pose_landmark = mp_pose.PoseLandmark | |
def detect_pose(image): | |
# Convert to RGB | |
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
# Run pose detection | |
result = pose.process(image_rgb) | |
keypoints = {} | |
if result.pose_landmarks: | |
# Draw landmarks on image | |
mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS) | |
# Get image dimensions | |
height, width, _ = image.shape | |
# Extract specific landmarks | |
landmark_indices = { | |
'left_shoulder': mp_pose_landmark.LEFT_SHOULDER, | |
'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER, | |
'left_hip': mp_pose_landmark.LEFT_HIP, | |
'right_hip': mp_pose_landmark.RIGHT_HIP | |
} | |
for name, index in landmark_indices.items(): | |
lm = result.pose_landmarks.landmark[index] | |
x, y = int(lm.x * width), int(lm.y * height) | |
keypoints[name] = (x, y) | |
# Draw a circle + label for debug | |
cv2.circle(image, (x, y), 5, (0, 255, 0), -1) | |
cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) | |
return image | |
def align_clothing(body_img, clothing_img): | |
image_rgb = cv2.cvtColor(body_img, cv2.COLOR_BGR2RGB) | |
result = pose.process(image_rgb) | |
output = body_img.copy() | |
if result.pose_landmarks: | |
h, w, _ = output.shape | |
# Extract key points | |
def get_point(landmark_id): | |
lm = result.pose_landmarks.landmark[landmark_id] | |
return int(lm.x * w), int(lm.y * h) | |
left_shoulder = get_point(mp_pose_landmark.LEFT_SHOULDER) | |
right_shoulder = get_point(mp_pose_landmark.RIGHT_SHOULDER) | |
left_hip = get_point(mp_pose_landmark.LEFT_HIP) | |
right_hip = get_point(mp_pose_landmark.RIGHT_HIP) | |
# Destination box (torso region) | |
dst_pts = np.array([ | |
left_shoulder, | |
right_shoulder, | |
right_hip, | |
left_hip | |
], dtype=np.float32) | |
# Source box (clothing image corners) | |
src_h, src_w = clothing_img.shape[:2] | |
src_pts = np.array([ | |
[0, 0], | |
[src_w, 0], | |
[src_w, src_h], | |
[0, src_h] | |
], dtype=np.float32) | |
# Compute perspective transform and warp | |
matrix = cv2.getPerspectiveTransform(src_pts, dst_pts) | |
warped_clothing = cv2.warpPerspective(clothing_img, matrix, (w, h), borderMode=cv2.BORDER_TRANSPARENT) | |
# Handle transparency | |
if clothing_img.shape[2] == 4: | |
alpha = warped_clothing[:, :, 3] / 255.0 | |
for c in range(3): | |
output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c] | |
else: | |
output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0) | |
return output | |
def process_image(human_img_path, garm_img_path): | |
client = Client("franciszzj/Leffa") | |
result = client.predict( | |
src_image_path=handle_file(human_img_path), | |
ref_image_path=handle_file(garm_img_path), | |
ref_acceleration=False, | |
step=30, | |
scale=2.5, | |
seed=42, | |
vt_model_type="viton_hd", | |
vt_garment_type="upper_body", | |
vt_repaint=False, | |
api_name="/leffa_predict_vt" | |
) | |
print(result) | |
generated_image_path = result[0] | |
print("generated_image_path" + generated_image_path) | |
generated_image = Image.open(generated_image_path) | |
return generated_image | |
# Custom CSS for better styling | |
custom_css = """ | |
.gradio-container { | |
max-width: 1200px !important; | |
} | |
.container { | |
max-width: 1200px; | |
margin: auto; | |
padding: 20px; | |
} | |
.header { | |
text-align: center; | |
margin-bottom: 30px; | |
} | |
.header h1 { | |
font-size: 2.5rem; | |
margin-bottom: 10px; | |
background: linear-gradient(45deg, #FF6B6B, #4ECDC4); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
} | |
.header p { | |
font-size: 1.1rem; | |
color: #666; | |
} | |
.image-container { | |
border-radius: 10px; | |
overflow: hidden; | |
box-shadow: 0 4px 8px rgba(0,0,0,0.1); | |
} | |
.upload-section { | |
background: #f9f9f9; | |
padding: 20px; | |
border-radius: 10px; | |
margin-bottom: 20px; | |
} | |
.try-btn { | |
background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important; | |
color: white !important; | |
font-weight: bold !important; | |
padding: 12px 24px !important; | |
border-radius: 50px !important; | |
border: none !important; | |
} | |
.try-btn:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 6px 12px rgba(0,0,0,0.15); | |
} | |
.examples-section { | |
margin-top: 15px; | |
} | |
.examples-section h3 { | |
margin-bottom: 10px; | |
color: #555; | |
} | |
""" | |
with gr.Blocks(css=custom_css, title="Virtual Try-On Fashion") as demo: | |
with gr.Column(elem_classes=["container"]): | |
with gr.Column(elem_classes=["header"]): | |
gr.HTML(""" | |
<h1>Virtual Try-On Fashion</h1> | |
<p>Upload your photo and select a garment to see how it looks on you! ✨</p> | |
""") | |
with gr.Row(): | |
with gr.Column(elem_classes=["upload-section"]): | |
gr.Markdown("### Step 1: Upload Your Photo") | |
human_img = gr.Image( | |
type="filepath", | |
label='Person Image', | |
interactive=True, | |
elem_classes=["image-container"] | |
) | |
with gr.Column(elem_classes=["examples-section"]): | |
gr.Markdown("**Example poses:**") | |
example = gr.Examples( | |
inputs=human_img, | |
examples_per_page=5, | |
examples=human_list_path, | |
label=None | |
) | |
with gr.Column(elem_classes=["upload-section"]): | |
gr.Markdown("### Step 2: Select Garment") | |
garm_img = gr.Image( | |
label="Clothing Item", | |
type="filepath", | |
interactive=True, | |
elem_classes=["image-container"] | |
) | |
with gr.Column(elem_classes=["examples-section"]): | |
gr.Markdown("**Example garments:**") | |
example = gr.Examples( | |
inputs=garm_img, | |
examples_per_page=5, | |
examples=garm_list_path, | |
label=None | |
) | |
with gr.Column(): | |
gr.Markdown("### Step 3: See the Result") | |
image_out = gr.Image( | |
label="Virtual Try-On Result", | |
type="pil", | |
elem_classes=["image-container"], | |
interactive=False | |
) | |
with gr.Row(): | |
gr.ClearButton([human_img, garm_img, image_out]) | |
with gr.Row(): | |
try_button = gr.Button( | |
value="Try It On Now", | |
variant='primary', | |
elem_classes=["try-btn"] | |
) | |
# Add some information sections | |
with gr.Accordion("ℹ️ How to use this tool", open=False): | |
gr.Markdown(""" | |
1. **Upload your photo**: Choose a clear front-facing photo with visible shoulders and hips | |
2. **Select a garment**: Pick from our examples or upload your own clothing image | |
3. **Click 'Try It On Now'**: See how the clothing looks on you instantly! | |
For best results: | |
- Use well-lit photos with good contrast | |
- Avoid baggy clothing in your reference photo | |
- Front-facing poses work best | |
""") | |
with gr.Accordion("⚠️ Limitations", open=False): | |
gr.Markdown(""" | |
- Works best with upper body garments (shirts, jackets) | |
- May not work perfectly with complex patterns or textures | |
- Results depend on pose detection accuracy | |
- Currently optimized for front-facing poses | |
""") | |
# Linking the button to the processing function | |
try_button.click( | |
fn=process_image, | |
inputs=[human_img, garm_img], | |
outputs=image_out, | |
api_name="try_on" | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True, share=False) |