Upload folder using huggingface_hub
Browse files- app.py +269 -145
- requirements.txt +8 -6
app.py
CHANGED
|
@@ -1,153 +1,277 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
from sentence_transformers import SentenceTransformer, CrossEncoder
|
| 7 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
"
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
"
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
)
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
do_sample=True,
|
| 102 |
-
|
| 103 |
-
top_p=
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
raw_cands = [GEN_TOK.decode(o, skip_special_tokens=True) for o in outputs]
|
| 109 |
-
|
| 110 |
-
cand_set = set()
|
| 111 |
-
for txt in raw_cands:
|
| 112 |
-
for line in txt.split("\n"):
|
| 113 |
-
s = _clean_slogan(line)
|
| 114 |
-
if not s: continue
|
| 115 |
-
if len(s.split()) < 2 or len(s.split()) > 8: continue
|
| 116 |
-
if _is_blocked_slogan(s): continue
|
| 117 |
-
cand_set.add(s.capitalize())
|
| 118 |
-
|
| 119 |
-
if not cand_set:
|
| 120 |
-
return "Fresh Ideas, Built To Scale"
|
| 121 |
-
|
| 122 |
-
scored = _score_candidates(query_text, sorted(cand_set))
|
| 123 |
-
scored.sort(key=lambda x: x[1], reverse=True)
|
| 124 |
-
return scored[0][0] if scored else "Fresh Ideas, Built To Scale"
|
| 125 |
-
|
| 126 |
-
# ------------------ Pipeline ------------------
|
| 127 |
-
def pipeline(user_input):
|
| 128 |
-
recs = recommend(user_input, top_k=3)
|
| 129 |
-
slogan = generate_slogan(user_input)
|
| 130 |
-
recs = recs.reset_index(drop=True)
|
| 131 |
-
recs.loc[len(recs)] = ["Generated Slogan", slogan, user_input, np.nan]
|
| 132 |
-
return recs
|
| 133 |
-
|
| 134 |
-
# ------------------ Gradio UI ------------------
|
| 135 |
-
examples = [
|
| 136 |
-
"AI coach for improving public speaking skills",
|
| 137 |
-
"Augmented reality app for interactive museum tours",
|
| 138 |
-
"Voice-controlled task manager for remote teams",
|
| 139 |
-
"Machine learning system for predicting crop yields",
|
| 140 |
-
"Platform for AI-assisted interior design suggestions"
|
| 141 |
-
]
|
| 142 |
-
|
| 143 |
-
demo = gr.Interface(
|
| 144 |
-
fn=pipeline,
|
| 145 |
-
inputs=gr.Textbox(label="Enter a startup description"),
|
| 146 |
-
outputs=gr.Dataframe(headers=["Name", "Tagline", "Description", "Score"]),
|
| 147 |
-
examples=examples,
|
| 148 |
-
title="SloganAI – Startup Recommendation & Slogan Generator",
|
| 149 |
-
description="Enter a startup idea and get top-3 similar startups + 1 generated slogan."
|
| 150 |
-
)
|
| 151 |
-
|
| 152 |
-
if __name__ == "__main__":
|
| 153 |
-
demo.launch()
|
|
|
|
| 1 |
+
\
|
| 2 |
+
import os, json, numpy as np, pandas as pd
|
| 3 |
import gradio as gr
|
| 4 |
+
import faiss
|
| 5 |
+
import re
|
| 6 |
+
from sentence_transformers import SentenceTransformer
|
|
|
|
| 7 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 8 |
|
| 9 |
+
from logic.cleaning import clean_dataframe
|
| 10 |
+
from logic.search import SloganSearcher
|
| 11 |
+
|
| 12 |
+
# -------------------- Config --------------------
|
| 13 |
+
ASSETS_DIR = "assets"
|
| 14 |
+
DATA_PATH = "data/slogan.csv"
|
| 15 |
+
PROMPT_PATH = "data/prompt.txt"
|
| 16 |
+
|
| 17 |
+
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
| 18 |
+
NORMALIZE = True
|
| 19 |
+
|
| 20 |
+
GEN_MODEL = "google/flan-t5-base"
|
| 21 |
+
NUM_GEN_CANDIDATES = 12
|
| 22 |
+
MAX_NEW_TOKENS = 18
|
| 23 |
+
TEMPERATURE = 0.7
|
| 24 |
+
TOP_P = 0.9
|
| 25 |
+
REPETITION_PENALTY = 1.15
|
| 26 |
+
|
| 27 |
+
# choose the most relevant yet non-duplicate candidate
|
| 28 |
+
RELEVANCE_WEIGHT = 0.7
|
| 29 |
+
NOVELTY_WEIGHT = 0.3
|
| 30 |
+
DUPLICATE_MAX_SIM = 0.92
|
| 31 |
+
NOVELTY_SIM_THRESHOLD = 0.80 # keep some distance from retrieved
|
| 32 |
+
|
| 33 |
+
META_PATH = os.path.join(ASSETS_DIR, "meta.json")
|
| 34 |
+
PARQUET_PATH = os.path.join(ASSETS_DIR, "slogans_clean.parquet")
|
| 35 |
+
INDEX_PATH = os.path.join(ASSETS_DIR, "faiss.index")
|
| 36 |
+
EMB_PATH = os.path.join(ASSETS_DIR, "embeddings.npy")
|
| 37 |
+
|
| 38 |
+
def _log(m): print(f"[SLOGAN-SPACE] {m}", flush=True)
|
| 39 |
+
|
| 40 |
+
# -------------------- Asset build --------------------
|
| 41 |
+
def _build_assets():
|
| 42 |
+
if not os.path.exists(DATA_PATH):
|
| 43 |
+
raise FileNotFoundError(f"Dataset not found at {DATA_PATH} (CSV with columns: 'tagline', 'description').")
|
| 44 |
+
os.makedirs(ASSETS_DIR, exist_ok=True)
|
| 45 |
+
|
| 46 |
+
_log(f"Loading dataset: {DATA_PATH}")
|
| 47 |
+
df = pd.read_csv(DATA_PATH)
|
| 48 |
+
|
| 49 |
+
_log(f"Rows before cleaning: {len(df)}")
|
| 50 |
+
df = clean_dataframe(df)
|
| 51 |
+
_log(f"Rows after cleaning: {len(df)}")
|
| 52 |
+
|
| 53 |
+
if "description" in df.columns and df["description"].notna().any():
|
| 54 |
+
texts = df["description"].fillna(df["tagline"]).astype(str).tolist()
|
| 55 |
+
text_col, fallback_col = "description", "tagline"
|
| 56 |
+
else:
|
| 57 |
+
texts = df["tagline"].astype(str).tolist()
|
| 58 |
+
text_col, fallback_col = "tagline", "tagline"
|
| 59 |
+
|
| 60 |
+
_log(f"Encoding with {MODEL_NAME} (normalize={NORMALIZE}) …")
|
| 61 |
+
encoder = SentenceTransformer(MODEL_NAME)
|
| 62 |
+
emb = encoder.encode(texts, batch_size=64, convert_to_numpy=True, normalize_embeddings=NORMALIZE)
|
| 63 |
+
|
| 64 |
+
dim = emb.shape[1]
|
| 65 |
+
index = faiss.IndexFlatIP(dim) if NORMALIZE else faiss.IndexFlatL2(dim)
|
| 66 |
+
index.add(emb)
|
| 67 |
+
|
| 68 |
+
_log("Persisting assets …")
|
| 69 |
+
df.to_parquet(PARQUET_PATH, index=False)
|
| 70 |
+
faiss.write_index(index, INDEX_PATH)
|
| 71 |
+
np.save(EMB_PATH, emb)
|
| 72 |
+
|
| 73 |
+
meta = {
|
| 74 |
+
"model_name": MODEL_NAME,
|
| 75 |
+
"dim": int(dim),
|
| 76 |
+
"normalized": NORMALIZE,
|
| 77 |
+
"metric": "ip" if NORMALIZE else "l2",
|
| 78 |
+
"row_count": int(len(df)),
|
| 79 |
+
"text_col": text_col,
|
| 80 |
+
"fallback_col": fallback_col,
|
| 81 |
+
}
|
| 82 |
+
with open(META_PATH, "w") as f:
|
| 83 |
+
json.dump(meta, f, indent=2)
|
| 84 |
+
_log("Assets built successfully.")
|
| 85 |
+
|
| 86 |
+
def _ensure_assets():
|
| 87 |
+
need = False
|
| 88 |
+
for p in (META_PATH, PARQUET_PATH, INDEX_PATH):
|
| 89 |
+
if not os.path.exists(p):
|
| 90 |
+
_log(f"Missing asset: {p}")
|
| 91 |
+
need = True
|
| 92 |
+
if need:
|
| 93 |
+
_log("Building assets from scratch …")
|
| 94 |
+
_build_assets()
|
| 95 |
+
return
|
| 96 |
+
try:
|
| 97 |
+
pd.read_parquet(PARQUET_PATH)
|
| 98 |
+
except Exception as e:
|
| 99 |
+
_log(f"Parquet read failed ({e}); rebuilding assets.")
|
| 100 |
+
_build_assets()
|
| 101 |
+
|
| 102 |
+
# Build before UI
|
| 103 |
+
_ensure_assets()
|
| 104 |
+
|
| 105 |
+
# -------------------- Retrieval --------------------
|
| 106 |
+
searcher = SloganSearcher(assets_dir=ASSETS_DIR, use_rerank=False)
|
| 107 |
+
meta = json.load(open(META_PATH))
|
| 108 |
+
_encoder = SentenceTransformer(meta["model_name"])
|
| 109 |
+
|
| 110 |
+
# -------------------- Generator --------------------
|
| 111 |
+
_gen_tokenizer = AutoTokenizer.from_pretrained(GEN_MODEL)
|
| 112 |
+
_gen_model = AutoModelForSeq2SeqLM.from_pretrained(GEN_MODEL)
|
| 113 |
+
|
| 114 |
+
# keep this list small so we don't nuke relevant outputs
|
| 115 |
+
_BANNED_TERMS = {"portal", "e-commerce", "ecommerce", "shopping", "shop"}
|
| 116 |
+
_PUNCT_CHARS = ":;—–-,.!?“”\"'`"
|
| 117 |
+
_PUNCT_RE = re.compile(f"[{re.escape(_PUNCT_CHARS)}]")
|
| 118 |
+
|
| 119 |
+
_MIN_WORDS, _MAX_WORDS = 2, 8
|
| 120 |
+
|
| 121 |
+
def _load_prompt():
|
| 122 |
+
if os.path.exists(PROMPT_PATH):
|
| 123 |
+
with open(PROMPT_PATH, "r", encoding="utf-8") as f:
|
| 124 |
+
return f.read()
|
| 125 |
+
return (
|
| 126 |
+
"You are a professional slogan writer.\n"
|
| 127 |
+
"Write ONE original startup slogan under 8 words, Title Case, no punctuation.\n"
|
| 128 |
+
"Do not copy examples.\n"
|
| 129 |
+
"Description:\n{description}\nSlogan:"
|
| 130 |
)
|
| 131 |
|
| 132 |
+
def _render_prompt(description: str, retrieved=None) -> str:
|
| 133 |
+
tmpl = _load_prompt()
|
| 134 |
+
if "{description}" in tmpl:
|
| 135 |
+
prompt = tmpl.replace("{description}", description)
|
| 136 |
+
else:
|
| 137 |
+
prompt = f"{tmpl}\n\nDescription:\n{description}\nSlogan:"
|
| 138 |
+
if retrieved:
|
| 139 |
+
prompt += "\n\nDo NOT copy these existing slogans:\n"
|
| 140 |
+
for s in retrieved[:3]:
|
| 141 |
+
prompt += f"- {s}\n"
|
| 142 |
+
return prompt
|
| 143 |
+
|
| 144 |
+
def _title_case(s: str) -> str:
|
| 145 |
+
small = {"and","or","for","of","the","to","in","on","with","a","an"}
|
| 146 |
+
words = [w for w in s.split() if w]
|
| 147 |
+
out = []
|
| 148 |
+
for i,w in enumerate(words):
|
| 149 |
+
lw = w.lower()
|
| 150 |
+
if i>0 and lw in small: out.append(lw)
|
| 151 |
+
else: out.append(lw.capitalize())
|
| 152 |
+
return " ".join(out)
|
| 153 |
+
|
| 154 |
+
def _strip_punct(s: str) -> str:
|
| 155 |
+
return _PUNCT_RE.sub("", s)
|
| 156 |
+
|
| 157 |
+
def _strict_ok(s: str) -> bool:
|
| 158 |
+
if not s: return False
|
| 159 |
+
wc = len(s.split())
|
| 160 |
+
if wc < _MIN_WORDS or wc > _MAX_WORDS: return False
|
| 161 |
+
lo = s.lower()
|
| 162 |
+
if any(term in lo for term in _BANNED_TERMS): return False
|
| 163 |
+
if lo in {"the","a","an"}: return False
|
| 164 |
+
return True
|
| 165 |
+
|
| 166 |
+
def _postprocess_strict(texts):
|
| 167 |
+
cleaned, seen = [], set()
|
| 168 |
+
for t in texts:
|
| 169 |
+
s = t.replace("Slogan:", "").strip().strip('"').strip("'")
|
| 170 |
+
s = " ".join(s.split())
|
| 171 |
+
s = _strip_punct(s) # remove punctuation instead of rejecting
|
| 172 |
+
s = _title_case(s)
|
| 173 |
+
if _strict_ok(s):
|
| 174 |
+
k = s.lower()
|
| 175 |
+
if k not in seen:
|
| 176 |
+
seen.add(k); cleaned.append(s)
|
| 177 |
+
return cleaned
|
| 178 |
+
|
| 179 |
+
def _postprocess_relaxed(texts):
|
| 180 |
+
# fallback if strict returns nothing: keep 2–8 words, strip punctuation, Title Case
|
| 181 |
+
cleaned, seen = [], set()
|
| 182 |
+
for t in texts:
|
| 183 |
+
s = t.strip().strip('"').strip("'")
|
| 184 |
+
s = _strip_punct(s)
|
| 185 |
+
s = " ".join(s.split())
|
| 186 |
+
wc = len(s.split())
|
| 187 |
+
if _MIN_WORDS <= wc <= _MAX_WORDS:
|
| 188 |
+
s = _title_case(s)
|
| 189 |
+
k = s.lower()
|
| 190 |
+
if k not in seen:
|
| 191 |
+
seen.add(k); cleaned.append(s)
|
| 192 |
+
return cleaned
|
| 193 |
+
|
| 194 |
+
def _generate_candidates(description: str, retrieved_texts, n: int = NUM_GEN_CANDIDATES):
|
| 195 |
+
prompt = _render_prompt(description, retrieved_texts)
|
| 196 |
+
|
| 197 |
+
# only block very generic junk at decode time
|
| 198 |
+
bad_ids = _gen_tokenizer(list(_BANNED_TERMS), add_special_tokens=False).input_ids
|
| 199 |
+
|
| 200 |
+
inputs = _gen_tokenizer([prompt], return_tensors="pt", padding=True, truncation=True)
|
| 201 |
+
outputs = _gen_model.generate(
|
| 202 |
+
**inputs,
|
| 203 |
do_sample=True,
|
| 204 |
+
temperature=TEMPERATURE,
|
| 205 |
+
top_p=TOP_P,
|
| 206 |
+
num_return_sequences=n,
|
| 207 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 208 |
+
no_repeat_ngram_size=3,
|
| 209 |
+
repetition_penalty=REPETITION_PENALTY,
|
| 210 |
+
bad_words_ids=bad_ids if bad_ids else None,
|
| 211 |
+
eos_token_id=_gen_tokenizer.eos_token_id,
|
| 212 |
)
|
| 213 |
+
texts = _gen_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 214 |
+
|
| 215 |
+
cands = _postprocess_strict(texts)
|
| 216 |
+
if not cands:
|
| 217 |
+
cands = _postprocess_relaxed(texts) # <- graceful fallback
|
| 218 |
+
return cands
|
| 219 |
+
|
| 220 |
+
def _pick_best(candidates, retrieved_texts, description):
|
| 221 |
+
"""Weighted relevance to description minus duplication vs retrieved."""
|
| 222 |
+
if not candidates:
|
| 223 |
+
return None
|
| 224 |
+
c_emb = _encoder.encode(candidates, convert_to_numpy=True, normalize_embeddings=True)
|
| 225 |
+
d_emb = _encoder.encode([description], convert_to_numpy=True, normalize_embeddings=True)[0]
|
| 226 |
+
rel = c_emb @ d_emb # cosine sim to description
|
| 227 |
+
|
| 228 |
+
if retrieved_texts:
|
| 229 |
+
R = _encoder.encode(retrieved_texts, convert_to_numpy=True, normalize_embeddings=True)
|
| 230 |
+
dup = np.max(R @ c_emb.T, axis=0) # max sim to any retrieved
|
| 231 |
+
else:
|
| 232 |
+
dup = np.zeros(len(candidates), dtype=np.float32)
|
| 233 |
+
|
| 234 |
+
# penalize near-duplicates outright
|
| 235 |
+
mask = dup < DUPLICATE_MAX_SIM
|
| 236 |
+
if mask.any():
|
| 237 |
+
scores = RELEVANCE_WEIGHT * rel[mask] - NOVELTY_WEIGHT * dup[mask]
|
| 238 |
+
best_idx = np.argmax(scores)
|
| 239 |
+
return [c for i, c in enumerate(candidates) if mask[i]][best_idx]
|
| 240 |
+
|
| 241 |
+
# else: pick most relevant that still clears a basic novelty bar, else top score
|
| 242 |
+
scores = RELEVANCE_WEIGHT * rel - NOVELTY_WEIGHT * dup
|
| 243 |
+
order = np.argsort(-scores)
|
| 244 |
+
for i in order:
|
| 245 |
+
if dup[i] < NOVELTY_SIM_THRESHOLD:
|
| 246 |
+
return candidates[i]
|
| 247 |
+
return candidates[order[0]]
|
| 248 |
+
|
| 249 |
+
# -------------------- Inference pipeline --------------------
|
| 250 |
+
def run_pipeline(user_description: str):
|
| 251 |
+
if not user_description or not user_description.strip():
|
| 252 |
+
return "Please enter a description."
|
| 253 |
+
retrieved_df = searcher.search(user_description, top_k=3, rerank_top_n=10)
|
| 254 |
+
retrieved_texts = retrieved_df["display"].tolist() if not retrieved_df.empty else []
|
| 255 |
+
gens = _generate_candidates(user_description, retrieved_texts, NUM_GEN_CANDIDATES)
|
| 256 |
+
chosen = _pick_best(gens, retrieved_texts, user_description) or (gens[0] if gens else "—")
|
| 257 |
+
lines = []
|
| 258 |
+
lines.append("### 🔎 Top 3 similar slogans")
|
| 259 |
+
if retrieved_texts:
|
| 260 |
+
for i, s in enumerate(retrieved_texts, 1):
|
| 261 |
+
lines.append(f"{i}. {s}")
|
| 262 |
+
else:
|
| 263 |
+
lines.append("No similar slogans found.")
|
| 264 |
+
lines.append("\n### ✨ AI-generated suggestion")
|
| 265 |
+
lines.append(chosen)
|
| 266 |
+
return "\n".join(lines)
|
| 267 |
+
|
| 268 |
+
# -------------------- UI --------------------
|
| 269 |
+
with gr.Blocks(title="Slogan Finder") as demo:
|
| 270 |
+
gr.Markdown("# 🔎 Slogan Finder\nDescribe your product/company; get 3 similar slogans + 1 AI-generated suggestion.")
|
| 271 |
+
query = gr.Textbox(label="Describe your product/company", placeholder="AI-powered patient financial navigation platform...")
|
| 272 |
+
btn = gr.Button("Get slogans", variant="primary")
|
| 273 |
+
out = gr.Markdown()
|
| 274 |
+
btn.click(run_pipeline, inputs=[query], outputs=out)
|
| 275 |
+
|
| 276 |
+
demo.queue(max_size=64).launch()
|
| 277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,7 +1,9 @@
|
|
| 1 |
-
gradio
|
| 2 |
-
|
| 3 |
-
sentence-transformers
|
| 4 |
-
faiss-cpu
|
| 5 |
-
pandas
|
| 6 |
-
numpy
|
|
|
|
| 7 |
torch
|
|
|
|
|
|
| 1 |
+
gradio==5.43.1
|
| 2 |
+
huggingface_hub>=0.23.0
|
| 3 |
+
sentence-transformers>=2.6.0
|
| 4 |
+
faiss-cpu>=1.8.0
|
| 5 |
+
pandas>=2.1.0
|
| 6 |
+
numpy>=1.26.0
|
| 7 |
+
pyarrow>=14.0.1
|
| 8 |
torch
|
| 9 |
+
transformers>=4.40.0
|