Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import requests
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
+
|
9 |
+
# Load BLIP Model
|
10 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
11 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
12 |
+
|
13 |
+
# Map common fish names to FishBase scientific names
|
14 |
+
name_map = {
|
15 |
+
"pufferfish": "Tetraodon",
|
16 |
+
"stonefish": "Synanceia",
|
17 |
+
"lionfish": "Pterois",
|
18 |
+
"tuna": "Thunnus",
|
19 |
+
"salmon": "Salmo-salar",
|
20 |
+
"catfish": "Ictalurus",
|
21 |
+
"tilapia": "Oreochromis"
|
22 |
+
}
|
23 |
+
|
24 |
+
# Poisonous species (scientific names)
|
25 |
+
poisonous_species = ["Tetraodon", "Synanceia", "Pterois"]
|
26 |
+
|
27 |
+
# FishBase scraping function
|
28 |
+
def get_fishbase_summary(scientific_name):
|
29 |
+
search_url = f"https://www.fishbase.se/summary/{scientific_name}.html"
|
30 |
+
try:
|
31 |
+
response = requests.get(search_url, timeout=10)
|
32 |
+
if response.status_code != 200:
|
33 |
+
return f"FishBase entry not found for: {scientific_name}"
|
34 |
+
|
35 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
36 |
+
summary_section = soup.find("div", {"id": "ssummary"})
|
37 |
+
if summary_section:
|
38 |
+
paragraphs = summary_section.find_all("p")
|
39 |
+
text = "\n\n".join(p.get_text(strip=True) for p in paragraphs if p.get_text(strip=True))
|
40 |
+
return text or f"No summary available for {scientific_name}"
|
41 |
+
else:
|
42 |
+
return f"No detailed summary found for {scientific_name}"
|
43 |
+
|
44 |
+
except Exception as e:
|
45 |
+
return f"Error fetching FishBase data for {scientific_name}: {str(e)}"
|
46 |
+
|
47 |
+
# Fish identification function
|
48 |
+
def identify_fish(image):
|
49 |
+
# Step 1: Generate caption from image
|
50 |
+
inputs = blip_processor(image, return_tensors="pt")
|
51 |
+
out = blip_model.generate(**inputs)
|
52 |
+
caption = blip_processor.decode(out[0], skip_special_tokens=True)
|
53 |
+
|
54 |
+
# Step 2: Extract fish name from caption
|
55 |
+
fish_name = None
|
56 |
+
for name in name_map:
|
57 |
+
if name in caption.lower():
|
58 |
+
fish_name = name
|
59 |
+
break
|
60 |
+
|
61 |
+
if not fish_name:
|
62 |
+
return f"❌ Could not identify a known fish species in the image caption: '{caption}'"
|
63 |
+
|
64 |
+
# Step 3: Lookup in FishBase
|
65 |
+
scientific_name = name_map[fish_name]
|
66 |
+
summary = get_fishbase_summary(scientific_name)
|
67 |
+
|
68 |
+
# Step 4: Check toxicity
|
69 |
+
is_poisonous = "Yes 🧪" if scientific_name in poisonous_species else "No ✅"
|
70 |
+
|
71 |
+
# Step 5: Final Output
|
72 |
+
return f"**Image Caption:** {caption}\n\n**Detected Fish:** {fish_name.title()}\n**Scientific Name:** {scientific_name}\n**Poisonous:** {is_poisonous}\n\n**📚 FishBase Info:**\n{summary}"
|
73 |
+
|
74 |
+
# Gradio UI
|
75 |
+
demo = gr.Interface(
|
76 |
+
fn=identify_fish,
|
77 |
+
inputs=gr.Image(type="pil"),
|
78 |
+
outputs="markdown",
|
79 |
+
title="🐟 Smart Fish Identifier (BLIP + FishBase)",
|
80 |
+
description="Upload a fish image. We use BLIP to describe the fish, match it with known species, then fetch info from FishBase to check if it's poisonous."
|
81 |
+
)
|
82 |
+
|
83 |
+
if __name__ == '__main__':
|
84 |
+
demo.launch()
|