Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
# Cultural Bias Explorer in Language Models
|
2 |
# ----------------------------------------
|
3 |
-
# This Python project uses LangChain +
|
4 |
# by retrieving answers to the same prompts using region-specific document bases.
|
5 |
|
6 |
# Install necessary packages before running:
|
7 |
-
# pip install langchain
|
8 |
|
9 |
from langchain_community.document_loaders import WikipediaLoader
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.vectorstores import FAISS
|
12 |
-
from
|
13 |
from langchain.chains import RetrievalQA
|
14 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
import os
|
@@ -37,12 +37,13 @@ def create_vector_store(region_topic):
|
|
37 |
return vectorstore
|
38 |
|
39 |
# ------------------ MAIN LOGIC ------------------
|
40 |
-
# Set your
|
41 |
-
|
42 |
|
43 |
-
llm =
|
44 |
-
repo_id="
|
45 |
-
|
|
|
46 |
)
|
47 |
|
48 |
for region in REGIONS:
|
|
|
1 |
# Cultural Bias Explorer in Language Models
|
2 |
# ----------------------------------------
|
3 |
+
# This Python project uses LangChain + HuggingFaceEndpoint to explore cultural bias
|
4 |
# by retrieving answers to the same prompts using region-specific document bases.
|
5 |
|
6 |
# Install necessary packages before running:
|
7 |
+
# pip install langchain huggingface_hub faiss-cpu sentence-transformers unstructured wikipedia
|
8 |
|
9 |
from langchain_community.document_loaders import WikipediaLoader
|
10 |
from langchain.embeddings import HuggingFaceEmbeddings
|
11 |
from langchain.vectorstores import FAISS
|
12 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
13 |
from langchain.chains import RetrievalQA
|
14 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
import os
|
|
|
37 |
return vectorstore
|
38 |
|
39 |
# ------------------ MAIN LOGIC ------------------
|
40 |
+
# Set your Hugging Face token in HF settings or as an env variable
|
41 |
+
# No need to manually set it here if using Hugging Face Spaces securely
|
42 |
|
43 |
+
llm = HuggingFaceEndpoint(
|
44 |
+
repo_id="HuggingFaceH4/zephyr-7b-beta", # free-access model
|
45 |
+
temperature=0.7,
|
46 |
+
max_new_tokens=512
|
47 |
)
|
48 |
|
49 |
for region in REGIONS:
|