Spaces:
Sleeping
Sleeping
Commit
·
eb66cb5
1
Parent(s):
d36dc81
trying
Browse files
model.py
CHANGED
|
@@ -1,36 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import torch
|
| 4 |
|
| 5 |
-
#
|
| 6 |
-
MODEL_NAME = "bigcode/starcoder"
|
| 7 |
-
|
| 8 |
-
# Ensure the token is provided
|
| 9 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 10 |
-
if not HF_TOKEN:
|
| 11 |
-
raise ValueError("Missing Hugging Face token. Set HUGGINGFACE_TOKEN as an environment variable.")
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
# Load tokenizer with authentication
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
| 18 |
-
|
| 19 |
-
# Load model with optimizations
|
| 20 |
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
MODEL_NAME,
|
| 22 |
token=HF_TOKEN,
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
).to(device)
|
| 28 |
|
| 29 |
def generate_code(prompt: str, max_tokens: int = 256):
|
| 30 |
-
|
| 31 |
-
if not prompt.strip():
|
| 32 |
-
return "Error: Empty prompt provided."
|
| 33 |
-
|
| 34 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 35 |
output = model.generate(**inputs, max_new_tokens=max_tokens)
|
| 36 |
-
return tokenizer.decode(output[0], skip_special_tokens=True)
|
|
|
|
| 1 |
+
# import os
|
| 2 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
# import torch
|
| 4 |
+
|
| 5 |
+
# # Correct model name
|
| 6 |
+
# MODEL_NAME = "bigcode/starcoder"
|
| 7 |
+
|
| 8 |
+
# # Ensure the token is provided
|
| 9 |
+
# HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 10 |
+
# if not HF_TOKEN:
|
| 11 |
+
# raise ValueError("Missing Hugging Face token. Set HUGGINGFACE_TOKEN as an environment variable.")
|
| 12 |
+
|
| 13 |
+
# # Set device
|
| 14 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 15 |
+
|
| 16 |
+
# # Load tokenizer with authentication
|
| 17 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
| 18 |
+
|
| 19 |
+
# # Load model with optimizations
|
| 20 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
+
# MODEL_NAME,
|
| 22 |
+
# token=HF_TOKEN,
|
| 23 |
+
# torch_dtype=torch.float16, # Reduce memory usage
|
| 24 |
+
# low_cpu_mem_usage=True, # Optimize loading
|
| 25 |
+
# device_map="auto", # Automatic device placement
|
| 26 |
+
# offload_folder="offload" # Offload to disk if needed
|
| 27 |
+
# ).to(device)
|
| 28 |
+
|
| 29 |
+
# def generate_code(prompt: str, max_tokens: int = 256):
|
| 30 |
+
# """Generates code based on the input prompt."""
|
| 31 |
+
# if not prompt.strip():
|
| 32 |
+
# return "Error: Empty prompt provided."
|
| 33 |
+
|
| 34 |
+
# inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 35 |
+
# output = model.generate(**inputs, max_new_tokens=max_tokens)
|
| 36 |
+
# return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 37 |
+
|
| 38 |
import os
|
| 39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 40 |
import torch
|
| 41 |
|
| 42 |
+
MODEL_NAME = "bigcode/starcoderbase-1b" # Lighter version
|
|
|
|
|
|
|
|
|
|
| 43 |
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
quant_config = BitsAndBytesConfig(
|
| 46 |
+
load_in_4bit=True,
|
| 47 |
+
bnb_4bit_quant_type="nf4",
|
| 48 |
+
bnb_4bit_compute_dtype=torch.float16
|
| 49 |
+
)
|
| 50 |
|
|
|
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
|
|
|
|
|
|
| 52 |
model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
MODEL_NAME,
|
| 54 |
token=HF_TOKEN,
|
| 55 |
+
quantization_config=quant_config,
|
| 56 |
+
device_map="auto",
|
| 57 |
+
trust_remote_code=True
|
| 58 |
+
)
|
|
|
|
| 59 |
|
| 60 |
def generate_code(prompt: str, max_tokens: int = 256):
|
| 61 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
output = model.generate(**inputs, max_new_tokens=max_tokens)
|
| 63 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|