Spaces:
Sleeping
Sleeping
File size: 11,923 Bytes
df4b062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"import gradio as gr\n",
"from fastcore.net import urljson, HTTPError\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"def size(repo:str):\n",
" \"Returns the size in GB of a HuggingFace Dataset.\"\n",
" url = f'https://huggingface.co/api/datasets/{repo}'\n",
" try: resp = urljson(f'{url}/treesize/main')\n",
" except HTTPError: return f'Did not find repo: {url}'\n",
" gb = resp['size'] / 1e9\n",
" return f'{gb:.2f} GB'"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'5.49 GB'"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"size(\"tglcourse/CelebA-faces-cropped-128\")\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860/\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"500\" height=\"500\" allow=\"autoplay; camera; microphone;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(<gradio.routes.App at 0x12c602d10>, 'http://127.0.0.1:7860/', None)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#|export\n",
"iface = gr.Interface(fn=size, inputs=gr.Text(value=\"tglcourse/CelebA-faces-cropped-128\"), outputs=\"text\")\n",
"iface.launch(width=500)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Closing server running on port: 7860\n"
]
}
],
"source": [
"# this is only necessary in a notebook\n",
"iface.close()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Overwriting requirements.txt\n"
]
}
],
"source": [
"%%writefile requirements.txt\n",
"fastcore"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"ename": "JSONDecodeError",
"evalue": "Expecting value: line 1 column 1 (char 0)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mJSONDecodeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[9], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39mfrom\u001b[39;00m \u001b[39mnbdev\u001b[39;00m\u001b[39m.\u001b[39;00m\u001b[39mexport\u001b[39;00m \u001b[39mimport\u001b[39;00m nb_export\n\u001b[0;32m----> 2\u001b[0m nb_export(\u001b[39m'\u001b[39;49m\u001b[39mapp.ipynb\u001b[39;49m\u001b[39m'\u001b[39;49m, lib_path\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39m.\u001b[39;49m\u001b[39m'\u001b[39;49m, name\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mapp\u001b[39;49m\u001b[39m'\u001b[39;49m)\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/nbdev/export.py:48\u001b[0m, in \u001b[0;36mnb_export\u001b[0;34m(nbname, lib_path, procs, debug, mod_maker, name)\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[39mif\u001b[39;00m lib_path \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m: lib_path \u001b[39m=\u001b[39m get_config()\u001b[39m.\u001b[39mlib_path\n\u001b[1;32m 47\u001b[0m exp \u001b[39m=\u001b[39m ExportModuleProc()\n\u001b[0;32m---> 48\u001b[0m nb \u001b[39m=\u001b[39m NBProcessor(nbname, [exp]\u001b[39m+\u001b[39;49mL(procs), debug\u001b[39m=\u001b[39;49mdebug)\n\u001b[1;32m 49\u001b[0m nb\u001b[39m.\u001b[39mprocess()\n\u001b[1;32m 50\u001b[0m \u001b[39mfor\u001b[39;00m mod,cells \u001b[39min\u001b[39;00m exp\u001b[39m.\u001b[39mmodules\u001b[39m.\u001b[39mitems():\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/nbdev/process.py:92\u001b[0m, in \u001b[0;36mNBProcessor.__init__\u001b[0;34m(self, path, procs, nb, debug, rm_directives, process)\u001b[0m\n\u001b[1;32m 91\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__init__\u001b[39m(\u001b[39mself\u001b[39m, path\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, procs\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, nb\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, debug\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m, rm_directives\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m, process\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m):\n\u001b[0;32m---> 92\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mnb \u001b[39m=\u001b[39m read_nb(path) \u001b[39mif\u001b[39;00m nb \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39melse\u001b[39;00m nb\n\u001b[1;32m 93\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlang \u001b[39m=\u001b[39m nb_lang(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mnb)\n\u001b[1;32m 94\u001b[0m \u001b[39mfor\u001b[39;00m cell \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mnb\u001b[39m.\u001b[39mcells: cell\u001b[39m.\u001b[39mdirectives_ \u001b[39m=\u001b[39m extract_directives(cell, remove\u001b[39m=\u001b[39mrm_directives, lang\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlang)\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/execnb/nbio.py:57\u001b[0m, in \u001b[0;36mread_nb\u001b[0;34m(path)\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mread_nb\u001b[39m(path):\n\u001b[1;32m 56\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mReturn notebook at `path`\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[0;32m---> 57\u001b[0m res \u001b[39m=\u001b[39m dict2nb(_read_json(path, encoding\u001b[39m=\u001b[39;49m\u001b[39m'\u001b[39;49m\u001b[39mutf-8\u001b[39;49m\u001b[39m'\u001b[39;49m))\n\u001b[1;32m 58\u001b[0m res[\u001b[39m'\u001b[39m\u001b[39mpath_\u001b[39m\u001b[39m'\u001b[39m] \u001b[39m=\u001b[39m \u001b[39mstr\u001b[39m(path)\n\u001b[1;32m 59\u001b[0m \u001b[39mreturn\u001b[39;00m res\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/site-packages/execnb/nbio.py:16\u001b[0m, in \u001b[0;36m_read_json\u001b[0;34m(self, encoding, errors)\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m_read_json\u001b[39m(\u001b[39mself\u001b[39m, encoding\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, errors\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m):\n\u001b[0;32m---> 16\u001b[0m \u001b[39mreturn\u001b[39;00m loads(Path(\u001b[39mself\u001b[39;49m)\u001b[39m.\u001b[39;49mread_text(encoding\u001b[39m=\u001b[39;49mencoding, errors\u001b[39m=\u001b[39;49merrors))\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/json/__init__.py:346\u001b[0m, in \u001b[0;36mloads\u001b[0;34m(s, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)\u001b[0m\n\u001b[1;32m 341\u001b[0m s \u001b[39m=\u001b[39m s\u001b[39m.\u001b[39mdecode(detect_encoding(s), \u001b[39m'\u001b[39m\u001b[39msurrogatepass\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m 343\u001b[0m \u001b[39mif\u001b[39;00m (\u001b[39mcls\u001b[39m \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m object_hook \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m\n\u001b[1;32m 344\u001b[0m parse_int \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m parse_float \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m\n\u001b[1;32m 345\u001b[0m parse_constant \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m object_pairs_hook \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m kw):\n\u001b[0;32m--> 346\u001b[0m \u001b[39mreturn\u001b[39;00m _default_decoder\u001b[39m.\u001b[39;49mdecode(s)\n\u001b[1;32m 347\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mcls\u001b[39m \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[1;32m 348\u001b[0m \u001b[39mcls\u001b[39m \u001b[39m=\u001b[39m JSONDecoder\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/json/decoder.py:337\u001b[0m, in \u001b[0;36mJSONDecoder.decode\u001b[0;34m(self, s, _w)\u001b[0m\n\u001b[1;32m 332\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mdecode\u001b[39m(\u001b[39mself\u001b[39m, s, _w\u001b[39m=\u001b[39mWHITESPACE\u001b[39m.\u001b[39mmatch):\n\u001b[1;32m 333\u001b[0m \u001b[39m\"\"\"Return the Python representation of ``s`` (a ``str`` instance\u001b[39;00m\n\u001b[1;32m 334\u001b[0m \u001b[39m containing a JSON document).\u001b[39;00m\n\u001b[1;32m 335\u001b[0m \n\u001b[1;32m 336\u001b[0m \u001b[39m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 337\u001b[0m obj, end \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mraw_decode(s, idx\u001b[39m=\u001b[39;49m_w(s, \u001b[39m0\u001b[39;49m)\u001b[39m.\u001b[39;49mend())\n\u001b[1;32m 338\u001b[0m end \u001b[39m=\u001b[39m _w(s, end)\u001b[39m.\u001b[39mend()\n\u001b[1;32m 339\u001b[0m \u001b[39mif\u001b[39;00m end \u001b[39m!=\u001b[39m \u001b[39mlen\u001b[39m(s):\n",
"File \u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/json/decoder.py:355\u001b[0m, in \u001b[0;36mJSONDecoder.raw_decode\u001b[0;34m(self, s, idx)\u001b[0m\n\u001b[1;32m 353\u001b[0m obj, end \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscan_once(s, idx)\n\u001b[1;32m 354\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mStopIteration\u001b[39;00m \u001b[39mas\u001b[39;00m err:\n\u001b[0;32m--> 355\u001b[0m \u001b[39mraise\u001b[39;00m JSONDecodeError(\u001b[39m\"\u001b[39m\u001b[39mExpecting value\u001b[39m\u001b[39m\"\u001b[39m, s, err\u001b[39m.\u001b[39mvalue) \u001b[39mfrom\u001b[39;00m \u001b[39mNone\u001b[39m\n\u001b[1;32m 356\u001b[0m \u001b[39mreturn\u001b[39;00m obj, end\n",
"\u001b[0;31mJSONDecodeError\u001b[0m: Expecting value: line 1 column 1 (char 0)"
]
}
],
"source": [
"from nbdev.export import nb_export\n",
"nb_export('app.ipynb', lib_path='.', name='app')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.10.4 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|