Spaces:
Runtime error
Runtime error
from threading import Thread | |
from typing import Iterator | |
import torch | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
import os | |
import transformers | |
from torch import cuda, bfloat16 | |
from peft import PeftModel, PeftConfig | |
token = os.environ.get("HF_API_TOKEN") | |
base_model_id = 'meta-llama/Llama-2-7b-chat-hf' | |
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' | |
bnb_config = transformers.BitsAndBytesConfig( | |
llm_int8_enable_fp32_cpu_offload = True | |
) | |
model_config = transformers.AutoConfig.from_pretrained( | |
base_model_id, | |
use_auth_token=token | |
) | |
model = transformers.AutoModelForCausalLM.from_pretrained( | |
base_model_id, | |
trust_remote_code=True, | |
config=model_config, | |
quantization_config=bnb_config, | |
# device_map='auto', | |
use_auth_token=token | |
) | |
config = PeftConfig.from_pretrained("Ashishkr/llama-2-medical-consultation") | |
model = PeftModel.from_pretrained(model, "Ashishkr/llama-2-medical-consultation").to(device) | |
model.eval() | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
base_model_id, | |
use_auth_token=token | |
) | |
# def get_prompt(message: str, chat_history: list[tuple[str, str]], | |
# system_prompt: str) -> str: | |
# texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n'] | |
# # The first user input is _not_ stripped | |
# do_strip = False | |
# for user_input, response in chat_history: | |
# user_input = user_input.strip() if do_strip else user_input | |
# do_strip = True | |
# texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ') | |
# message = message.strip() if do_strip else message | |
# texts.append(f'{message} [/INST]') | |
# return ''.join(texts) | |
def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str: | |
texts = [f'{system_prompt}\n'] | |
if chat_history: | |
for user_input, response in chat_history[:-1]: | |
texts.append(f'{user_input} {response}\n') | |
# Getting the user input and response from the last tuple in the chat history | |
last_user_input, last_response = chat_history[-1] | |
texts.append(f' input: {last_user_input} {last_response} {message} Response: ') | |
else: | |
texts.append(f' input: {message} Response: ') | |
return ''.join(texts) | |
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int: | |
prompt = get_prompt(message, chat_history, system_prompt) | |
input_ids = tokenizer([prompt], return_tensors='np', add_special_tokens=False)['input_ids'] | |
return input_ids.shape[-1] | |
def run(message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.8, | |
top_p: float = 0.95, | |
top_k: int = 50) -> Iterator[str]: | |
prompt = get_prompt(message, chat_history, system_prompt) | |
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to(device) | |
streamer = TextIteratorStreamer(tokenizer, | |
timeout=20., | |
skip_prompt=True, | |
skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
if "instruction:" in text: | |
# Append only the part of text before "instruction:" and stop streaming | |
outputs.append(text.split("instruction:")[0]) | |
break | |
else: | |
outputs.append(text) | |
yield ''.join(outputs) | |