Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import requests | |
| import io | |
| from PIL import Image | |
| import json | |
| import os | |
| import logging | |
| import math | |
| from tqdm import tqdm | |
| import time | |
| #logging.basicConfig(level=logging.DEBUG) | |
| with open('loras.json', 'r') as f: | |
| loras = json.load(f) | |
| def update_selection(selected_state: gr.SelectData): | |
| logging.debug(f"Inside update_selection, selected_state: {selected_state}") | |
| selected_lora_index = selected_state.index | |
| selected_lora = loras[selected_lora_index] | |
| new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
| lora_repo = selected_lora["repo"] | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
| return ( | |
| gr.update(placeholder=new_placeholder), | |
| updated_text, # Retorna o texto Markdown atualizado | |
| selected_state | |
| ) | |
| def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)): | |
| logging.debug(f"Inside run_lora, selected_state: {selected_state}") | |
| if not selected_state: | |
| logging.error("selected_state is None or empty.") | |
| raise gr.Error("You must select a LoRA before proceeding.") # Popup error when no LoRA is selected | |
| selected_lora_index = selected_state.index # Changed this line | |
| selected_lora = loras[selected_lora_index] | |
| api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}" | |
| trigger_word = selected_lora["trigger_word"] | |
| #token = os.getenv("API_TOKEN") | |
| payload = { | |
| "inputs": f"{prompt} {trigger_word}", | |
| "parameters":{"negative_prompt": "bad art, ugly, watermark, deformed", "num_inference_steps": 30, "scheduler":"DPMSolverMultistepScheduler"}, | |
| } | |
| #headers = {"Authorization": f"Bearer {token}"} | |
| # Add a print statement to display the API request | |
| print(f"API Request: {api_url}") | |
| #print(f"API Headers: {headers}") | |
| print(f"API Payload: {payload}") | |
| error_count = 0 | |
| pbar = tqdm(total=None, desc="Loading model") | |
| while(True): | |
| response = requests.post(api_url, json=payload) | |
| if response.status_code == 200: | |
| return Image.open(io.BytesIO(response.content)) | |
| elif response.status_code == 503: | |
| #503 is triggered when the model is doing cold boot. It also gives you a time estimate from when the model is loaded but it is not super precise | |
| time.sleep(1) | |
| pbar.update(1) | |
| elif response.status_code == 500 and error_count < 5: | |
| print(response.content) | |
| time.sleep(1) | |
| error_count += 1 | |
| continue | |
| else: | |
| logging.error(f"API Error: {response.status_code}") | |
| raise gr.Error("API Error: Unable to fetch the image.") # Raise a Gradio error here | |
| with gr.Blocks(css="custom.css") as app: | |
| title = gr.Markdown("# artificialguybr LoRA portfolio") | |
| description = gr.Markdown( | |
| "### This is my portfolio. Follow me on Twitter [@artificialguybr](https://twitter.com/artificialguybr). \n" | |
| "**Note**: The speed and generation quality are for demonstration purposes. " | |
| "For best quality, use Auto or Comfy or Diffusers. \n" | |
| "**Warning**: The API might take some time to deliver the image. \n" | |
| "Special thanks to Hugging Face for their free inference API." | |
| ) | |
| selected_state = gr.State() | |
| with gr.Row(): | |
| gallery = gr.Gallery( | |
| [(item["image"], item["title"]) for item in loras], | |
| label="LoRA Gallery", | |
| allow_preview=False, | |
| columns=3 | |
| ) | |
| with gr.Column(): | |
| prompt_title = gr.Markdown("### Click on a LoRA in the gallery to select it") | |
| selected_info = gr.Markdown("") # Novo componente Markdown para exibir o texto da LoRA selecionada | |
| with gr.Row(): | |
| prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA") | |
| button = gr.Button("Run") | |
| result = gr.Image(interactive=False, label="Generated Image") | |
| gallery.select( | |
| update_selection, | |
| outputs=[prompt, selected_info, selected_state] # Adicionado selected_info aqui | |
| ) | |
| prompt.submit( | |
| fn=run_lora, | |
| inputs=[prompt, selected_state], | |
| outputs=[result] | |
| ) | |
| button.click( | |
| fn=run_lora, | |
| inputs=[prompt, selected_state], | |
| outputs=[result] | |
| ) | |
| app.queue(max_size=20, concurrency_count=5) | |
| app.launch() |