import marimo __generated_with = "0.11.26" app = marimo.App(width="full") @app.cell def _(): import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import altair as alt return alt, np, pd, plt, sns @app.cell def _(platforms_data): # Complete the platform data with GC AI, Notebook LM, and Vecflow platforms_data.update( { 'GC AI': { 'metrics': [ {'metric': 'Pass Rate (Arthur)', 'value': 60}, {'metric': 'Pass Rate (Anna)', 'value': 40}, {'metric': 'Helpfulness (Arthur)', 'value': 1.4 * 50}, {'metric': 'Helpfulness (Anna)', 'value': 0.5 * 50}, {'metric': 'Adequate Length (Arthur)', 'value': 1.8 * 50}, {'metric': 'Adequate Length (Anna)', 'value': 1.0 * 50}, ], 'performance': [ {'task': 'Task #6', 'arthur': 6, 'anna': 0}, {'task': 'Task #13', 'arthur': 0, 'anna': 0}, {'task': 'Task #18', 'arthur': 6, 'anna': 6}, {'task': 'Task #19', 'arthur': 0, 'anna': 0}, {'task': 'Task #20', 'arthur': 6, 'anna': 0}, ], 'strengths': [ 'Good adequate length rating from Arthur', 'Decent pass rate from Arthur (60%)', 'Solid helpfulness score from Arthur', ], 'weaknesses': [ 'Lowest helpfulness rating from Anna (0.5/2.0)', 'Largest discrepancy between evaluators', 'Lower pass rate from Anna (40%)', ], }, 'Notebook LM': { 'metrics': [ {'metric': 'Pass Rate (Arthur)', 'value': 60}, {'metric': 'Pass Rate (Anna)', 'value': 60}, {'metric': 'Helpfulness (Arthur)', 'value': 0.8 * 50}, {'metric': 'Helpfulness (Anna)', 'value': 1.2 * 50}, {'metric': 'Adequate Length (Arthur)', 'value': 1.6 * 50}, {'metric': 'Adequate Length (Anna)', 'value': 2.0 * 50}, ], 'performance': [ {'task': 'Task #3', 'arthur': 6, 'anna': 0}, {'task': 'Task #6', 'arthur': 0, 'anna': 0}, {'task': 'Task #11', 'arthur': 0, 'anna': 6}, {'task': 'Task #13', 'arthur': 6, 'anna': 6}, {'task': 'Task #15', 'arthur': 6, 'anna': 6}, {'task': 'Task #19', 'arthur': 6, 'anna': 6}, ], 'strengths': [ 'Perfect agreement between Arthur and Anna on pass/fail', 'Highest adequate length rating from Anna (2.0/2.0)', 'Consistent pass rate between evaluators (60%)', ], 'weaknesses': [ 'Lower helpfulness rating from Arthur (0.8/2.0)', 'Mixed performance in specific tasks', ], }, 'Vecflow': { 'metrics': [ {'metric': 'Pass Rate (Arthur)', 'value': 60}, {'metric': 'Pass Rate (Anna)', 'value': 40}, {'metric': 'Helpfulness (Arthur)', 'value': 0.6 * 50}, {'metric': 'Helpfulness (Anna)', 'value': 0.6 * 50}, {'metric': 'Adequate Length (Arthur)', 'value': 1.8 * 50}, {'metric': 'Adequate Length (Anna)', 'value': 1.4 * 50}, ], 'performance': [ {'task': 'Task #11', 'arthur': 0, 'anna': 6}, {'task': 'Task #13', 'arthur': 6, 'anna': 0}, {'task': 'Task #15', 'arthur': 6, 'anna': 0}, {'task': 'Task #18', 'arthur': 6, 'anna': 6}, {'task': 'Task #19', 'arthur': 0, 'anna': 0}, ], 'strengths': [ 'Perfect agreement on helpfulness between evaluators', 'Strong adequate length scores from both evaluators', 'Good performance in specialized tasks', ], 'weaknesses': [ 'Lowest helpfulness rating overall (0.6/2.0)', 'Lower pass rate from Anna (40%)', 'Inconsistent evaluation on complex tasks', ], }, } ) return @app.cell def _(): # Platform data platforms_data = { 'Chat GPT': { 'metrics': [ {'metric': 'Pass Rate (Arthur)', 'value': 100}, {'metric': 'Pass Rate (Anna)', 'value': 40}, {'metric': 'Helpfulness (Arthur)', 'value': 1.5 * 50}, # Scaling to 0-100 {'metric': 'Helpfulness (Anna)', 'value': 1.25 * 50}, {'metric': 'Adequate Length (Arthur)', 'value': 1.75 * 50}, {'metric': 'Adequate Length (Anna)', 'value': 1.25 * 50}, ], 'performance': [{'task': 'Task #1', 'arthur': 6, 'anna': 0}, {'task': 'Task #3', 'arthur': 6, 'anna': 0}], 'strengths': [ 'High pass rate from Arthur (100%)', 'Strong helpfulness ratings from both evaluators', 'Good adequate length scores', ], 'weaknesses': ['Lower pass rate from Anna (40%)', 'Inconsistent evaluation between Arthur and Anna'], }, 'CoPilot': { 'metrics': [ {'metric': 'Pass Rate (Arthur)', 'value': 40}, {'metric': 'Pass Rate (Anna)', 'value': 60}, {'metric': 'Helpfulness (Arthur)', 'value': 1.0 * 50}, {'metric': 'Helpfulness (Anna)', 'value': 1.33 * 50}, {'metric': 'Adequate Length (Arthur)', 'value': 1.2 * 50}, {'metric': 'Adequate Length (Anna)', 'value': 1.33 * 50}, ], 'performance': [ {'task': 'Task #1', 'arthur': 6, 'anna': 6}, {'task': 'Task #11', 'arthur': 0, 'anna': 6}, {'task': 'Task #15', 'arthur': 0, 'anna': 0}, {'task': 'Task #18', 'arthur': 6, 'anna': 0}, {'task': 'Task #20', 'arthur': 0, 'anna': 6}, ], 'strengths': [ 'Balanced helpfulness scores from both evaluators', 'Consistent adequate length ratings', 'Higher pass rate from Anna than from Arthur', ], 'weaknesses': ['Lower overall pass rates', 'Inconsistent evaluation between tasks', 'Below-average scores on complex tasks'], }, 'DeepSeek': { 'metrics': [ {'metric': 'Pass Rate (Arthur)', 'value': 75}, {'metric': 'Pass Rate (Anna)', 'value': 100}, {'metric': 'Helpfulness (Arthur)', 'value': 1.33 * 50}, {'metric': 'Helpfulness (Anna)', 'value': 2.0 * 50}, {'metric': 'Adequate Length (Arthur)', 'value': 2.0 * 50}, {'metric': 'Adequate Length (Anna)', 'value': 1.67 * 50}, ], 'performance': [ {'task': 'Task #11', 'arthur': 6, 'anna': 6}, {'task': 'Task #13', 'arthur': 6, 'anna': 0}, {'task': 'Task #18', 'arthur': 6, 'anna': 6}, {'task': 'Task #19', 'arthur': 0, 'anna': 6}, ], 'strengths': [ 'Perfect pass rate from Anna (100%)', 'Highest helpfulness rating from Anna (2.0/2.0)', 'Highest adequate length rating from Arthur (2.0/2.0)', 'Strong overall performance across metrics', ], 'weaknesses': ['Some inconsistency between evaluators', 'Lower pass rate from Arthur compared to Anna'], }, } return (platforms_data,) @app.cell def _(platforms_data): # Complete the platform data with GC AI, Notebook LM, and Vecflow platforms_data.update( { 'GC AI': { 'metrics': [ {'metric': 'Pass Rate (Arthur)', 'value': 60}, {'metric': 'Pass Rate (Anna)', 'value': 40}, {'metric': 'Helpfulness (Arthur)', 'value': 1.4 * 50}, {'metric': 'Helpfulness (Anna)', 'value': 0.5 * 50}, {'metric': 'Adequate Length (Arthur)', 'value': 1.8 * 50}, {'metric': 'Adequate Length (Anna)', 'value': 1.0 * 50}, ], 'performance': [ {'task': 'Task #6', 'arthur': 6, 'anna': 0}, {'task': 'Task #13', 'arthur': 0, 'anna': 0}, {'task': 'Task #18', 'arthur': 6, 'anna': 6}, {'task': 'Task #19', 'arthur': 0, 'anna': 0}, {'task': 'Task #20', 'arthur': 6, 'anna': 0}, ], 'strengths': [ 'Good adequate length rating from Arthur', 'Decent pass rate from Arthur (60%)', 'Solid helpfulness score from Arthur', ], 'weaknesses': [ 'Lowest helpfulness rating from Anna (0.5/2.0)', 'Largest discrepancy between evaluators', 'Lower pass rate from Anna (40%)', ], }, 'Notebook LM': { 'metrics': [ {'metric': 'Pass Rate (Arthur)', 'value': 60}, {'metric': 'Pass Rate (Anna)', 'value': 60}, {'metric': 'Helpfulness (Arthur)', 'value': 0.8 * 50}, {'metric': 'Helpfulness (Anna)', 'value': 1.2 * 50}, {'metric': 'Adequate Length (Arthur)', 'value': 1.6 * 50}, {'metric': 'Adequate Length (Anna)', 'value': 2.0 * 50}, ], 'performance': [ {'task': 'Task #3', 'arthur': 6, 'anna': 0}, {'task': 'Task #6', 'arthur': 0, 'anna': 0}, {'task': 'Task #11', 'arthur': 0, 'anna': 6}, {'task': 'Task #13', 'arthur': 6, 'anna': 6}, {'task': 'Task #15', 'arthur': 6, 'anna': 6}, {'task': 'Task #19', 'arthur': 6, 'anna': 6}, ], 'strengths': [ 'Perfect agreement between Arthur and Anna on pass/fail', 'Highest adequate length rating from Anna (2.0/2.0)', 'Consistent pass rate between evaluators (60%)', ], 'weaknesses': [ 'Lower helpfulness rating from Arthur (0.8/2.0)', 'Mixed performance in specific tasks', ], }, 'Vecflow': { 'metrics': [ {'metric': 'Pass Rate (Arthur)', 'value': 60}, {'metric': 'Pass Rate (Anna)', 'value': 40}, {'metric': 'Helpfulness (Arthur)', 'value': 0.6 * 50}, {'metric': 'Helpfulness (Anna)', 'value': 0.6 * 50}, {'metric': 'Adequate Length (Arthur)', 'value': 1.8 * 50}, {'metric': 'Adequate Length (Anna)', 'value': 1.4 * 50}, ], 'performance': [ {'task': 'Task #11', 'arthur': 0, 'anna': 6}, {'task': 'Task #13', 'arthur': 6, 'anna': 0}, {'task': 'Task #15', 'arthur': 6, 'anna': 0}, {'task': 'Task #18', 'arthur': 6, 'anna': 6}, {'task': 'Task #19', 'arthur': 0, 'anna': 0}, ], 'strengths': [ 'Perfect agreement on helpfulness between evaluators', 'Strong adequate length scores from both evaluators', 'Good performance in specialized tasks', ], 'weaknesses': [ 'Lowest helpfulness rating overall (0.6/2.0)', 'Lower pass rate from Anna (40%)', 'Inconsistent evaluation on complex tasks', ], }, } ) return @app.cell def _(pd): # Task type data task_type_data = pd.DataFrame( [ {'name': 'Simple Extraction', 'arthur': 80, 'anna': 70}, {'name': 'Complex Analysis', 'arthur': 65, 'anna': 60}, {'name': 'Regulatory/Legal', 'arthur': 50, 'anna': 40}, {'name': 'Identification', 'arthur': 90, 'anna': 75}, {'name': 'Summarization', 'arthur': 70, 'anna': 65}, ] ) # Platform performance over time data trend_data = { 'Chat GPT': [ {'task': 1, 'arthur': 6, 'anna': 0}, {'task': 3, 'arthur': 6, 'anna': 0}, {'task': 11, 'arthur': 6, 'anna': 0}, {'task': 13, 'arthur': 6, 'anna': 6}, {'task': 18, 'arthur': 6, 'anna': 6}, ], 'CoPilot': [ {'task': 1, 'arthur': 6, 'anna': 6}, {'task': 11, 'arthur': 0, 'anna': 6}, {'task': 15, 'arthur': 0, 'anna': 0}, {'task': 18, 'arthur': 6, 'anna': 0}, {'task': 20, 'arthur': 0, 'anna': 6}, ], 'DeepSeek': [ {'task': 11, 'arthur': 6, 'anna': 6}, {'task': 13, 'arthur': 6, 'anna': 0}, {'task': 18, 'arthur': 6, 'anna': 6}, {'task': 19, 'arthur': 0, 'anna': 6}, ], 'GC AI': [ {'task': 6, 'arthur': 6, 'anna': 0}, {'task': 13, 'arthur': 0, 'anna': 0}, {'task': 18, 'arthur': 6, 'anna': 6}, {'task': 19, 'arthur': 0, 'anna': 0}, {'task': 20, 'arthur': 6, 'anna': 0}, ], 'Notebook LM': [ {'task': 3, 'arthur': 6, 'anna': 0}, {'task': 6, 'arthur': 0, 'anna': 0}, {'task': 11, 'arthur': 0, 'anna': 6}, {'task': 13, 'arthur': 6, 'anna': 6}, {'task': 15, 'arthur': 6, 'anna': 6}, {'task': 19, 'arthur': 6, 'anna': 6}, ], 'Vecflow': [ {'task': 11, 'arthur': 0, 'anna': 6}, {'task': 13, 'arthur': 6, 'anna': 0}, {'task': 15, 'arthur': 6, 'anna': 0}, {'task': 18, 'arthur': 6, 'anna': 6}, {'task': 19, 'arthur': 0, 'anna': 0}, ], } # Map pass/fail values to binary for plotting mapped_trend_data = {} for platform, data in trend_data.items(): mapped_trend_data[platform] = [ {'task': item['task'], 'arthur': 1 if item['arthur'] == 6 else 0, 'anna': 1 if item['anna'] == 6 else 0} for item in data ] return data, mapped_trend_data, platform, task_type_data, trend_data @app.cell def _(alt, mapped_trend_data, pd): def plot_task_performance_interactive(platform_name): """Create an interactive line chart for task performance""" # Convert to DataFrame data = pd.DataFrame(mapped_trend_data[platform_name]) # Melt the dataframe for Altair data_melted = data.melt(id_vars=['task'], var_name='evaluator', value_name='result') # Create a color scale color_scale = alt.Scale(domain=['arthur', 'anna'], range=['#4c78a8', '#ff7f0e']) # Create the chart chart = ( alt.Chart(data_melted) .mark_line(point=True) .encode( x=alt.X('task:N', title='Task Number'), y=alt.Y( 'result:N', title='Result', scale=alt.Scale(domain=[0, 1]), axis=alt.Axis(labelExpr="datum.value === 0 ? 'Fail' : 'Pass'") ), color=alt.Color('evaluator:N', title='Evaluator', scale=color_scale, legend=alt.Legend(title='Evaluator')), tooltip=['task', 'evaluator', alt.Tooltip('result', title='Result', format='.0f', formatType='number')], ) .transform_calculate(result_label="datum.result === 0 ? 'Fail' : 'Pass'") .properties(width=500, height=300, title=f'{platform_name} Task Performance') .configure_title(fontSize=20, anchor='start') .configure_axis(labelFontSize=12, titleFontSize=14) .configure_point(size=100) .interactive() ) return chart return (plot_task_performance_interactive,) @app.cell def _(alt, task_type_data): def plot_task_type_performance_interactive(): """Create an interactive bar chart for task type performance""" # Melt the dataframe for Altair task_type_melted = task_type_data.melt(id_vars=['name'], var_name='evaluator', value_name='score') # Create a color scale color_scale = alt.Scale(domain=['arthur', 'anna'], range=['#4c78a8', '#ff7f0e']) # Create the chart chart = ( alt.Chart(task_type_melted) .mark_bar() .encode( x=alt.X('name:N', title='Task Type', axis=alt.Axis(labelAngle=-45)), y=alt.Y('score:Q', title='Average Score (%)'), color=alt.Color('evaluator:N', title='Evaluator', scale=color_scale), tooltip=['name', 'evaluator', alt.Tooltip('score', title='Score', format='.0f')], ) .properties(width=600, height=400, title='Task Type Performance Analysis') .configure_title(fontSize=20, anchor='start') .configure_axis(labelFontSize=12, titleFontSize=14) .interactive() ) return chart return (plot_task_type_performance_interactive,) @app.cell def _( display_platform_evaluation, platform_summary, plot_platform_radar_interactive, plot_task_performance_interactive, ): def analyze_platform_interactive(platform_name='DeepSeek'): """Create a comprehensive interactive analysis for a single platform""" from IPython.display import display, HTML, Markdown # Display the platform name display(Markdown(f'# AI Platform In-Depth Analysis: {platform_name}')) # Create the radar chart for metrics display(Markdown('## Performance Metrics')) display(plot_platform_radar_interactive(platform_name)) # Show task performance display(Markdown('## Task Performance')) display(plot_task_performance_interactive(platform_name)) # Display strengths and weaknesses display(Markdown('## Platform Evaluation')) display_platform_evaluation(platform_name) # Show platform summary display(Markdown('## Platform Summary')) platform_summary(platform_name) return None return (analyze_platform_interactive,) @app.cell def _(analyze_platform_interactive): # Analyze Vecflow analyze_platform_interactive('Vecflow') return @app.cell def _(analyze_platform_interactive): # Analyze Vecflow analyze_platform_interactive('Vecflow') return @app.cell def _(analyze_platform_interactive): # Analyze Notebook LM analyze_platform_interactive('Notebook LM') return @app.cell def _(analyze_platform_interactive): # Analyze GC AI analyze_platform_interactive('GC AI') return @app.cell def _(analyze_platform_interactive): # Analyze CoPilot analyze_platform_interactive('CoPilot') return @app.cell def _(analyze_platform_interactive): # Analyze Chat GPT analyze_platform_interactive('Chat GPT') return @app.cell def _(analyze_platform_interactive): # Analyze DeepSeek analyze_platform_interactive('DeepSeek') return @app.cell def _(compare_all_platforms_interactive): # Compare all platforms compare_all_platforms_interactive() return @app.cell def _( compare_platforms_interactive, pd, platforms_data, plot_task_type_performance_interactive, ): def compare_all_platforms_interactive(): """Display interactive comparison of all platforms""" from IPython.display import display, Markdown # Display the title display(Markdown('# AI Platform Comparison')) # Show interactive comparison chart display(Markdown('## Metrics Comparison')) display(compare_platforms_interactive()) # Show task type performance display(Markdown('## Task Type Performance')) display(plot_task_type_performance_interactive()) # Overall rankings display(Markdown('## Overall Platform Rankings')) # Calculate average metrics for each platform rankings = [] for platform, data in platforms_data.items(): avg_metrics = sum(metric['value'] for metric in data['metrics']) / len(data['metrics']) rankings.append({'Platform': platform, 'Average Score': avg_metrics}) rankings_df = pd.DataFrame(rankings) rankings_df.sort_values('Average Score', ascending=False, inplace=True) # Create a DataFrame to display rankings for i, (idx, row) in enumerate(rankings_df.iterrows(), 1): print(f'{i}. {row["Platform"]} - Average Score: {row["Average Score"]:.2f}') return None return (compare_all_platforms_interactive,) @app.cell def _(alt, pd, platforms_data): def compare_platforms_interactive(): """Create an interactive chart for comparing all platforms""" # Create a DataFrame with all platform metrics metrics_comparison = [] for platform, data in platforms_data.items(): for metric in data['metrics']: metrics_comparison.append({'Platform': platform, 'Metric': metric['metric'], 'Value': metric['value']}) comparison_df = pd.DataFrame(metrics_comparison) # Create a grouped bar chart chart = ( alt.Chart(comparison_df) .mark_bar() .encode( x=alt.X('Platform:N', title='Platform'), y=alt.Y('Value:Q', title='Score'), color=alt.Color('Platform:N', legend=None), column=alt.Column('Metric:N', title=None), tooltip=['Platform', 'Metric', 'Value'], ) .properties(width=100, title='Platform Metric Comparison') .configure_title(fontSize=20, anchor='start') .configure_axis(labelFontSize=12, titleFontSize=14) .interactive() ) return chart return (compare_platforms_interactive,) @app.cell def _(alt, pd, platforms_data): def plot_platform_radar_interactive(platform_name): """Create an interactive radar chart for platform metrics using Altair""" # Get platform metrics data metrics = platforms_data[platform_name]['metrics'] # Convert to long format for Altair metrics_df = pd.DataFrame(metrics) # Create the base chart chart = ( alt.Chart(metrics_df) .mark_line(point=True) .encode( x=alt.X('metric:N', title=None, sort=None), y=alt.Y('value:Q', scale=alt.Scale(domain=[0, 100]), title='Score'), color=alt.value('#4c78a8'), tooltip=['metric', 'value'], ) .properties(width=500, height=400, title=f'{platform_name} Performance Metrics') .configure_title(fontSize=20, anchor='start') .configure_axis(labelFontSize=12, titleFontSize=14) .configure_point(size=100) .interactive() ) return chart return (plot_platform_radar_interactive,) @app.cell def _(alt): alt.renderers.enable('default') return @app.cell def _(compare_all_platforms): # Compare all platforms compare_all_platforms() return @app.cell def _(pd, platforms_data, plot_task_type_performance, plt): def compare_all_platforms(): """Display comparison of all platforms""" # Create a DataFrame with all platform metrics for comparison metrics_comparison = [] for platform, data in platforms_data.items(): # Extract metrics platform_metrics = {metric['metric']: metric['value'] for metric in data['metrics']} platform_metrics['Platform'] = platform metrics_comparison.append(platform_metrics) comparison_df = pd.DataFrame(metrics_comparison) comparison_df.set_index('Platform', inplace=True) # Display the comparison table print('# AI Platform Comparison\n') print('## Metrics Comparison') print(comparison_df) # Create a bar chart to compare platforms plt.figure(figsize=(14, 8)) comparison_df.plot(kind='bar', figsize=(14, 8)) plt.title('Platform Metrics Comparison') plt.xlabel('Platform') plt.ylabel('Score') plt.legend(title='Metrics', bbox_to_anchor=(1.05, 1), loc='upper left') plt.tight_layout() print('\n## Task Type Performance') plot_task_type_performance() # Overall rankings print('\n## Overall Platform Rankings') # Calculate average metrics for each platform rankings = [] for platform, data in platforms_data.items(): avg_metrics = sum(metric['value'] for metric in data['metrics']) / len(data['metrics']) rankings.append({'Platform': platform, 'Average Score': avg_metrics}) rankings_df = pd.DataFrame(rankings) rankings_df.sort_values('Average Score', ascending=False, inplace=True) # Display rankings for i, (idx, row) in enumerate(rankings_df.iterrows(), 1): print(f'{i}. {row["Platform"]} - Average Score: {row["Average Score"]:.2f}') return plt.gca() return (compare_all_platforms,) @app.cell def _(compare_all_platforms): # Compare all platforms compare_all_platforms() return @app.cell def _(platforms_data): def platform_summary(platform_name): """Display a summary of the platform performance""" summaries = { 'DeepSeek': 'DeepSeek shows the strongest overall performance across both evaluators, with a perfect pass rate from Anna and high marks on both helpfulness and adequate length metrics. It consistently delivers high-quality responses across various task types.', 'Chat GPT': "Chat GPT performs excellently according to Arthur with a perfect pass rate, but shows inconsistency with Anna's evaluations. Its strengths lie in helpfulness and adequate response length, particularly in extraction and summarization tasks.", 'Notebook LM': 'Notebook LM demonstrates the highest level of evaluator agreement with identical pass rates from Arthur and Anna. It excels in adequate length ratings but scores lower on helpfulness metrics from Arthur.', 'CoPilot': 'CoPilot shows moderate performance across metrics with slightly higher ratings from Anna than Arthur. It maintains consistency in adequate length but struggles with more complex analysis tasks.', 'GC AI': 'GC AI exhibits the largest discrepancy between evaluator ratings, with Arthur giving significantly higher scores than Anna across all metrics. It performs well in adequate length according to Arthur but scores poorly in helpfulness from Anna.', 'Vecflow': 'Vecflow demonstrates perfect agreement on helpfulness ratings between evaluators, though these scores are the lowest across all platforms. It excels in adequate length metrics but shows inconsistent pass rates between evaluators.', } # Create tags for the platform tags = [] metrics = platforms_data[platform_name]['metrics'] tags.append(f'📊 {platform_name}') if metrics[0]['value'] >= 60: tags.append('🟢 High Arthur Pass Rate') if metrics[1]['value'] >= 60: tags.append('🟢 High Anna Pass Rate') if metrics[2]['value'] / 50 >= 1.3: tags.append('🟣 Strong Helpfulness (Arthur)') if metrics[3]['value'] / 50 >= 1.3: tags.append('🟣 Strong Helpfulness (Anna)') if metrics[4]['value'] / 50 >= 1.7: tags.append('🔵 Excellent Length (Arthur)') if metrics[5]['value'] / 50 >= 1.7: tags.append('🔵 Excellent Length (Anna)') if metrics[0]['value'] == metrics[1]['value']: tags.append('🟡 Evaluator Agreement') print(f'== {platform_name} Summary ==\n') print(summaries[platform_name]) print('\nTags:') print(' '.join(tags)) return None return (platform_summary,) @app.cell def _(np, platforms_data, plt): def plot_platform_radar(platform_name): """Create a radar chart for platform metrics with enhanced styling""" metrics = platforms_data[platform_name]['metrics'] # Extract data categories = [m['metric'] for m in metrics] values = [m['value'] for m in metrics] # Number of categories N = len(categories) # Create angle for each category angles = [n / float(N) * 2 * np.pi for n in range(N)] angles += angles[:1] # Close the loop # Add the first value at the end to close the circle values += values[:1] # Create figure fig, ax = plt.subplots(figsize=(10, 6), subplot_kw=dict(polar=True), facecolor='#f8f9fa') # Draw the chart ax.plot(angles, values, linewidth=2, linestyle='solid', label=platform_name, color='#8884d8') ax.fill(angles, values, alpha=0.25, color='#8884d8') # Set category labels plt.xticks(angles[:-1], categories, size=10, fontweight='bold', color='#444444') # Set y-axis limits ax.set_ylim(0, 100) # Add grid ax.grid(color='#dddddd', linestyle='-', linewidth=0.5) # Set background color for each level ax.set_facecolor('#f8f9fa') # Add title with platform-specific color platform_colors = { 'DeepSeek': '#6b5b95', 'Chat GPT': '#3498db', 'CoPilot': '#f39c12', 'GC AI': '#1abc9c', 'Notebook LM': '#e74c3c', 'Vecflow': '#9b59b6', } color = platform_colors.get(platform_name, '#8884d8') plt.title(f'{platform_name} Performance Metrics', size=16, fontweight='bold', color=color, pad=20) # Add legend plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1), frameon=True, facecolor='white', edgecolor='#dddddd') plt.tight_layout() return plt.gca() return (plot_platform_radar,) @app.cell def _(mapped_trend_data, pd, plt, sns): def plot_task_performance(platform_name): """Create an enhanced line chart for task performance""" # Convert to DataFrame data = pd.DataFrame(mapped_trend_data[platform_name]) # Set a theme sns.set_style('whitegrid') plt.figure(figsize=(10, 6), facecolor='#f8f9fa') # Platform-specific colors platform_colors = { 'DeepSeek': ('#6b5b95', '#d64161'), 'Chat GPT': ('#3498db', '#1abc9c'), 'CoPilot': ('#f39c12', '#e67e22'), 'GC AI': ('#1abc9c', '#16a085'), 'Notebook LM': ('#e74c3c', '#c0392b'), 'Vecflow': ('#9b59b6', '#8e44ad'), } arthur_color, anna_color = platform_colors.get(platform_name, ('#8884d8', '#82ca9d')) # Plot lines with enhanced styling plt.plot( data['task'], data['arthur'], marker='o', markersize=10, linestyle='-', linewidth=2.5, label="Arthur's Evaluation", color=arthur_color, alpha=0.9, ) plt.plot( data['task'], data['anna'], marker='s', markersize=10, linestyle='-', linewidth=2.5, label="Anna's Evaluation", color=anna_color, alpha=0.9, ) # Customize plot plt.title(f'{platform_name} Task Performance', fontsize=16, fontweight='bold') plt.xlabel('Task Number', fontsize=12, fontweight='bold') plt.ylabel('Result', fontsize=12, fontweight='bold') # Set y-axis to show Pass/Fail instead of 1/0 plt.yticks([0, 1], ['Fail', 'Pass'], fontsize=12) # Ensure x-axis shows integer task numbers plt.xticks(data['task'], fontsize=11) plt.grid(True, linestyle='--', alpha=0.7) # Enhanced legend legend = plt.legend( loc='upper center', bbox_to_anchor=(0.5, -0.15), facecolor='white', edgecolor='#dddddd', shadow=True, ncol=2, fontsize=12 ) # Add a border to the plot ax = plt.gca() for spine in ax.spines.values(): spine.set_edgecolor('#dddddd') spine.set_linewidth(1.5) plt.tight_layout() return plt.gca() return (plot_task_performance,) @app.cell def _(platforms_data): def display_platform_evaluation(platform_name): """Display platform strengths and weaknesses with HTML styling""" strengths = platforms_data[platform_name]['strengths'] weaknesses = platforms_data[platform_name]['weaknesses'] # Platform-specific color platform_colors = { 'DeepSeek': '#6b5b95', 'Chat GPT': '#3498db', 'CoPilot': '#f39c12', 'GC AI': '#1abc9c', 'Notebook LM': '#e74c3c', 'Vecflow': '#9b59b6', } color = platform_colors.get(platform_name, '#8884d8') html_output = f"""

{platform_name} Evaluation

Key Strengths

    """ for strength in strengths: html_output += f'
  • {strength}
  • ' html_output += """

Areas for Improvement

    """ for weakness in weaknesses: html_output += f'
  • ⚠️ {weakness}
  • ' html_output += """
""" from IPython.display import HTML, display display(HTML(html_output)) return None return (display_platform_evaluation,) @app.cell def _(np, plt, sns, task_type_data): def plot_task_type_performance(): """Create an enhanced bar chart for task type performance""" # Set a theme sns.set_style('whitegrid') plt.figure(figsize=(12, 6), facecolor='#f8f9fa') # Customize colors colors = {'arthur': '#6b5b95', 'anna': '#d64161'} # Set width of bars bar_width = 0.35 # Set positions of bars on x-axis x = np.arange(len(task_type_data)) # Create bars with enhanced styling plt.bar( x - bar_width / 2, task_type_data['arthur'], bar_width, label="Arthur's Rating", color=colors['arthur'], edgecolor='white', linewidth=1.5, alpha=0.9, ) plt.bar( x + bar_width / 2, task_type_data['anna'], bar_width, label="Anna's Rating", color=colors['anna'], edgecolor='white', linewidth=1.5, alpha=0.9, ) # Add labels and title with enhanced styling plt.xlabel('Task Type', fontsize=12, fontweight='bold') plt.ylabel('Average Score (%)', fontsize=12, fontweight='bold') plt.title('Task Type Performance Analysis', fontsize=16, fontweight='bold') # Add xticks on the middle of the group bars with better formatting plt.xticks(x, task_type_data['name'], rotation=30, ha='right', fontsize=11, fontweight='bold') # Create enhanced legend legend = plt.legend( loc='upper center', bbox_to_anchor=(0.5, -0.15), facecolor='white', edgecolor='#dddddd', shadow=True, ncol=2, fontsize=12 ) # Add value labels on top of each bar for i, v in enumerate(task_type_data['arthur']): plt.text(i - bar_width / 2, v + 2, str(v), ha='center', fontsize=9, fontweight='bold') for i, v in enumerate(task_type_data['anna']): plt.text(i + bar_width / 2, v + 2, str(v), ha='center', fontsize=9, fontweight='bold') # Add grid plt.grid(True, linestyle='--', alpha=0.7, axis='y') # Add a border to the plot ax = plt.gca() for spine in ax.spines.values(): spine.set_edgecolor('#dddddd') spine.set_linewidth(1.5) # Adjust layout plt.tight_layout() return plt.gca() return (plot_task_type_performance,) @app.cell def _( display_platform_evaluation, platform_summary, plot_platform_radar, plot_task_performance, ): def analyze_platform(platform_name='DeepSeek'): """Create a comprehensive analysis for a single platform""" # Display the platform name print(f'# AI Platform In-Depth Analysis: {platform_name}\n') # Create the radar chart for metrics print('## Performance Metrics') plot_platform_radar(platform_name) # Show task performance print('\n## Task Performance') plot_task_performance(platform_name) # Display strengths and weaknesses print('\n## Platform Evaluation') display_platform_evaluation(platform_name) # Show platform summary print('\n## Platform Summary') platform_summary(platform_name) return None return (analyze_platform,) @app.cell def _(compare_all_platforms): # Compare all platforms compare_all_platforms() return @app.cell def _(platforms_data): def platform_selector(): """Prints available platforms and prompt for selection""" print('Available platforms for analysis:') for i, platform in enumerate(platforms_data.keys(), 1): print(f'{i}. {platform}') print('\nTo analyze a platform, run:') print('analyze_platform("platform_name")') print('\nTo compare all platforms, run:') print('compare_all_platforms()') return None # Display available platforms platform_selector() return (platform_selector,) @app.cell def _(compare_all_platforms): compare_all_platforms() return @app.cell def _(): return @app.cell def _(plot_platform_radar_interactive): # This function appears to be defined but not called plot_platform_radar_interactive('DeepSeek') return @app.cell def _(plot_platform_radar_interactive): # This function appears to be defined but not called plot_platform_radar_interactive('DeepSeek') return @app.cell def _(compare_all_platforms_interactive): # Execute the compare_all_platforms_interactive function compare_all_platforms_interactive() return @app.cell def _(platform_selector): # Call platform_selector to display available platforms platform_selector() return @app.cell def _(): return @app.cell def _(pd): import json from IPython.display import HTML, display # Convert the agreement data into a Python structure agreement_data = [ {'platform': 'Chat GPT', 'arthurValue': 1.5, 'annaValue': 1.25, 'category': 'Helpfulness'}, {'platform': 'CoPilot', 'arthurValue': 1.0, 'annaValue': 1.33, 'category': 'Helpfulness'}, {'platform': 'DeepSeek', 'arthurValue': 1.33, 'annaValue': 2.0, 'category': 'Helpfulness'}, {'platform': 'GC AI', 'arthurValue': 1.4, 'annaValue': 0.5, 'category': 'Helpfulness'}, {'platform': 'Notebook LM', 'arthurValue': 0.8, 'annaValue': 1.2, 'category': 'Helpfulness'}, {'platform': 'Vecflow', 'arthurValue': 0.6, 'annaValue': 0.6, 'category': 'Helpfulness'}, {'platform': 'Chat GPT', 'arthurValue': 1.75, 'annaValue': 1.25, 'category': 'Adequate Length'}, {'platform': 'CoPilot', 'arthurValue': 1.2, 'annaValue': 1.33, 'category': 'Adequate Length'}, {'platform': 'DeepSeek', 'arthurValue': 2.0, 'annaValue': 1.67, 'category': 'Adequate Length'}, {'platform': 'GC AI', 'arthurValue': 1.8, 'annaValue': 1.0, 'category': 'Adequate Length'}, {'platform': 'Notebook LM', 'arthurValue': 1.6, 'annaValue': 2.0, 'category': 'Adequate Length'}, {'platform': 'Vecflow', 'arthurValue': 1.8, 'annaValue': 1.4, 'category': 'Adequate Length'}, ] # Convert pass/fail agreement data pass_fail_agreement = [ {'platform': 'Chat GPT', 'arthur': 100, 'anna': 40, 'agreement': 'Disagree'}, {'platform': 'CoPilot', 'arthur': 40, 'anna': 60, 'agreement': 'Disagree'}, {'platform': 'DeepSeek', 'arthur': 75, 'anna': 100, 'agreement': 'Disagree'}, {'platform': 'GC AI', 'arthur': 60, 'anna': 40, 'agreement': 'Disagree'}, {'platform': 'Notebook LM', 'arthur': 60, 'anna': 60, 'agreement': 'Agree'}, {'platform': 'Vecflow', 'arthur': 60, 'anna': 40, 'agreement': 'Disagree'}, ] # Calculate correlations using pandas for accuracy def calculate_correlations(): helpfulness_data = pd.DataFrame([item for item in agreement_data if item['category'] == 'Helpfulness']) adequate_length_data = pd.DataFrame([item for item in agreement_data if item['category'] == 'Adequate Length']) pass_fail_data = pd.DataFrame(pass_fail_agreement) helpfulness_correlation = helpfulness_data['arthurValue'].corr(helpfulness_data['annaValue']) adequate_length_correlation = adequate_length_data['arthurValue'].corr(adequate_length_data['annaValue']) pass_rate_correlation = pass_fail_data['arthur'].corr(pass_fail_data['anna']) return { 'helpfulness': round(helpfulness_correlation, 2), 'adequate_length': round(adequate_length_correlation, 2), 'pass_rate': round(pass_rate_correlation, 2), } correlations = calculate_correlations() return ( HTML, agreement_data, calculate_correlations, correlations, display, json, pass_fail_agreement, ) @app.cell def _(correlations): correlations return @app.cell def _( agree_count, agreement_data, calculate_average_metrics, correlations, disagree_count, np, pass_fail_agreement, pd, plt, ): def _(): def _(): def interactive_evaluator_dashboard(): """Display an interactive dashboard for evaluator analysis""" from IPython.display import display, Markdown, HTML # Display header display( HTML("""

Evaluator Comparison Analysis

Analyzing differences between Arthur's and Anna's evaluations

""") ) # Display Agreement Section display(Markdown('## Agreement Overview')) # Create side-by-side visualizations fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 7)) # Agreement Pie Chart labels = ['Agreement', 'Disagreement'] sizes = [agree_count, disagree_count] colors = ['#4CAF50', '#F44336'] explode = (0.1, 0) ax1.pie( sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140, textprops={'fontsize': 12, 'fontweight': 'bold'}, ) ax1.set_title('Evaluator Pass/Fail Agreement', fontsize=16, fontweight='bold') # Average Scores Bar Chart avg_df = calculate_average_metrics() # Set width of bars bar_width = 0.35 x = np.arange(len(avg_df)) # Create bars ax2.bar( x - bar_width / 2, avg_df['Arthur'], width=bar_width, label="Arthur's Avg", color='#8884d8', edgecolor='white', linewidth=1.5, ) ax2.bar( x + bar_width / 2, avg_df['Anna'], width=bar_width, label="Anna's Avg", color='#82ca9d', edgecolor='white', linewidth=1.5 ) # Add data labels for i in range(len(x)): ax2.text( x[i] - bar_width / 2, avg_df['Arthur'][i] + 0.05, f'{avg_df["Arthur"][i]:.2f}', ha='center', va='bottom', fontweight='bold', fontsize=10, ) ax2.text( x[i] + bar_width / 2, avg_df['Anna'][i] + 0.05, f'{avg_df["Anna"][i]:.2f}', ha='center', va='bottom', fontweight='bold', fontsize=10, ) # Customize plot ax2.set_xlabel('Category', fontsize=12, fontweight='bold') ax2.set_ylabel('Average Score', fontsize=12, fontweight='bold') ax2.set_title('Average Scores by Evaluator', fontsize=16, fontweight='bold') ax2.set_xticks(x) ax2.set_xticklabels(avg_df['Category'], fontsize=12) ax2.set_ylim(0, 2.2) ax2.grid(axis='y', linestyle='--', alpha=0.7) ax2.legend(loc='lower center', bbox_to_anchor=(0.5, -0.25), ncol=2, fontsize=12) plt.tight_layout() display(plt.gcf()) plt.close() # Now show correlation analysis display(Markdown('## Correlation Analysis')) # Create correlations chart fig, ax = plt.subplots(figsize=(10, 6)) metrics = ['Helpfulness', 'Adequate Length', 'Pass Rate'] corr_values = [correlations['helpfulness'], correlations['adequate_length'], correlations['pass_rate']] bars = ax.bar(metrics, corr_values) # Colorize bars based on correlation (positive or negative) for i, bar in enumerate(bars): if corr_values[i] < 0: bar.set_color('#F44336') # red for negative correlation else: bar.set_color('#4CAF50') # green for positive correlation # Add correlation values above/below bars for i, v in enumerate(corr_values): if v >= 0: ax.text(i, v + 0.05, f'{v:.2f}', ha='center', fontweight='bold') else: ax.text(i, v - 0.1, f'{v:.2f}', ha='center', fontweight='bold') # Add reference line at y=0 ax.axhline(y=0, color='black', linestyle='-', alpha=0.3) # Set y-axis limits to show the full range -1 to 1 ax.set_ylim(-1.1, 1.1) ax.set_title('Evaluator Correlation Analysis', fontsize=14, fontweight='bold') ax.set_ylabel('Correlation Coefficient', fontsize=12) ax.text( 1, -0.9, 'Range: -1 to 1, where 1 is perfect positive correlation,\n-1 is perfect negative correlation, and 0 is no correlation', fontsize=8, ha='center', style='italic', ) plt.tight_layout() display(plt.gcf()) plt.close() # Display scatter plots display(Markdown('## Score Comparison Scatter Plots')) # Create a 1x2 grid for helpfulness and adequate length scatter plots fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 7)) # Helpfulness Scatter Plot helpfulness_data = [item for item in agreement_data if item['category'] == 'Helpfulness'] x1 = [item['arthurValue'] for item in helpfulness_data] y1 = [item['annaValue'] for item in helpfulness_data] platforms1 = [item['platform'] for item in helpfulness_data] scatter1 = ax1.scatter(x1, y1, c='#8884d8', s=100, alpha=0.7) # Add platform labels for i, platform in enumerate(platforms1): ax1.annotate(platform, (x1[i], y1[i]), textcoords='offset points', xytext=(0, 10), ha='center') # Add axis labels ax1.set_xlabel("Arthur's Rating", fontsize=12) ax1.set_ylabel("Anna's Rating", fontsize=12) ax1.set_title('Helpfulness Correlation', fontsize=14, fontweight='bold') # Set axis limits ax1.set_xlim(0, 2) ax1.set_ylim(0, 2) # Add perfect correlation line ax1.plot([0, 2], [0, 2], 'k--', alpha=0.3) # Add correlation value text ax1.text(0.1, 1.8, f'Correlation: {correlations["helpfulness"]}', fontsize=12, bbox=dict(facecolor='white', alpha=0.5)) ax1.grid(True, linestyle='--', alpha=0.3) # Adequate Length Scatter Plot adequate_length_data = [item for item in agreement_data if item['category'] == 'Adequate Length'] x2 = [item['arthurValue'] for item in adequate_length_data] y2 = [item['annaValue'] for item in adequate_length_data] platforms2 = [item['platform'] for item in adequate_length_data] scatter2 = ax2.scatter(x2, y2, c='#82ca9d', s=100, alpha=0.7) # Add platform labels for i, platform in enumerate(platforms2): ax2.annotate(platform, (x2[i], y2[i]), textcoords='offset points', xytext=(0, 10), ha='center') # Add axis labels ax2.set_xlabel("Arthur's Rating", fontsize=12) ax2.set_ylabel("Anna's Rating", fontsize=12) ax2.set_title('Adequate Length Correlation', fontsize=14, fontweight='bold') # Set axis limits ax2.set_xlim(0, 2) ax2.set_ylim(0, 2) # Add perfect correlation line ax2.plot([0, 2], [0, 2], 'k--', alpha=0.3) # Add correlation value text ax2.text(0.1, 1.8, f'Correlation: {correlations["adequate_length"]}', fontsize=12, bbox=dict(facecolor='white', alpha=0.5)) ax2.grid(True, linestyle='--', alpha=0.3) plt.tight_layout() display(plt.gcf()) plt.close() # Pass Rate Correlation Scatter Plot display(Markdown('## Pass Rate Comparison')) plt.figure(figsize=(10, 6)) x = [item['arthur'] for item in pass_fail_agreement] y = [item['anna'] for item in pass_fail_agreement] platforms = [item['platform'] for item in pass_fail_agreement] colors = ['#4CAF50' if item['agreement'] == 'Agree' else '#F44336' for item in pass_fail_agreement] scatter = plt.scatter(x, y, c=colors, s=100, alpha=0.7) # Add platform labels for i, platform in enumerate(platforms): plt.annotate(platform, (x[i], y[i]), textcoords='offset points', xytext=(0, 10), ha='center') # Add axis labels plt.xlabel("Arthur's Pass Rate (%)", fontsize=12) plt.ylabel("Anna's Pass Rate (%)", fontsize=12) plt.title('Pass Rate Correlation', fontsize=14, fontweight='bold') # Set axis limits plt.xlim(30, 105) plt.ylim(30, 105) # Add perfect correlation line plt.plot([30, 105], [30, 105], 'k--', alpha=0.3) # Add correlation value text plt.text(35, 95, f'Correlation: {correlations["pass_rate"]}', fontsize=12, bbox=dict(facecolor='white', alpha=0.5)) # Add legend from matplotlib.lines import Line2D legend_elements = [ Line2D([0], [0], marker='o', color='w', markerfacecolor='#4CAF50', markersize=10, label='Agreement'), Line2D([0], [0], marker='o', color='w', markerfacecolor='#F44336', markersize=10, label='Disagreement'), ] plt.legend(handles=legend_elements, loc='upper left') plt.grid(True, linestyle='--', alpha=0.3) plt.tight_layout() display(plt.gcf()) plt.close() # Platform-specific differences display(Markdown('## Platform-specific Evaluator Differences')) # Calculate platform differences if not already done if not 'display_df' in globals(): platform_differences = [] for platform in set(item['platform'] for item in agreement_data): helpfulness = next( (item for item in agreement_data if item['platform'] == platform and item['category'] == 'Helpfulness'), None ) adequate_length = next( (item for item in agreement_data if item['platform'] == platform and item['category'] == 'Adequate Length'), None ) pass_fail = next((item for item in pass_fail_agreement if item['platform'] == platform), None) if helpfulness and adequate_length and pass_fail: helpfulness_diff = helpfulness['arthurValue'] - helpfulness['annaValue'] adequate_length_diff = adequate_length['arthurValue'] - adequate_length['annaValue'] pass_rate_diff = pass_fail['arthur'] - pass_fail['anna'] return platform_differences.append( { 'Platform': platform, 'Helpfulness Diff': helpfulness_diff, 'Adequate Length Diff': adequate_length_diff, 'Pass Rate Diff': pass_rate_diff, 'Agreement': pass_fail['agreement'], } ) platform_differences = [] for platform in set(item['platform'] for item in agreement_data): helpfulness = next((item for item in agreement_data if item['platform'] == platform and item['category'] == 'Helpfulness'), None) adequate_length = next( (item for item in agreement_data if item['platform'] == platform and item['category'] == 'Adequate Length'), None ) pass_fail = next((item for item in pass_fail_agreement if item['platform'] == platform), None) if helpfulness and adequate_length and pass_fail: helpfulness_diff = helpfulness['arthurValue'] - helpfulness['annaValue'] adequate_length_diff = adequate_length['arthurValue'] - adequate_length['annaValue'] pass_rate_diff = pass_fail['arthur'] - pass_fail['anna'] return platform_differences.append( { 'Platform': platform, 'Helpfulness Diff': helpfulness_diff, 'Adequate Length Diff': adequate_length_diff, 'Pass Rate Diff': pass_rate_diff, 'Agreement': pass_fail['agreement'], } ) platform_diff_df = pd.DataFrame(platform_differences) _() return @app.cell def _(correlations, plt): # Creating Correlation Analysis Chart fig, ax = plt.subplots(figsize=(10, 6)) metrics = ['Helpfulness', 'Adequate Length', 'Pass Rate'] corr_values = [correlations['helpfulness'], correlations['adequate_length'], correlations['pass_rate']] bars = ax.bar(metrics, corr_values, color=['#8884d8', '#82ca9d', '#ff7300']) # Colorize bars based on correlation (positive or negative) for i, bar in enumerate(bars): if corr_values[i] < 0: bar.set_color('#F44336') # red for negative correlation else: bar.set_color('#4CAF50') # green for positive correlation # Add correlation values above/below bars for i, v in enumerate(corr_values): if v >= 0: ax.text(i, v + 0.05, f'{v:.2f}', ha='center', fontweight='bold') else: ax.text(i, v - 0.1, f'{v:.2f}', ha='center', fontweight='bold') # Add reference line at y=0 ax.axhline(y=0, color='black', linestyle='-', alpha=0.3) # Set y-axis limits to show the full range -1 to 1 ax.set_ylim(-1.1, 1.1) # Add labels and title ax.set_title('Evaluator Correlation Analysis', fontsize=14, fontweight='bold') ax.set_ylabel('Correlation Coefficient', fontsize=12) ax.text( 1, -0.9, 'Range: -1 to 1, where 1 is perfect positive correlation,\n-1 is perfect negative correlation, and 0 is no correlation', fontsize=8, ha='center', style='italic', ) plt.tight_layout() return ax, bar, bars, corr_values, fig, i, metrics, v @app.cell def _(agreement_data, correlations, plt): def _(): # Create Helpfulness Correlation Scatter Plot helpfulness_data = [item for item in agreement_data if item['category'] == 'Helpfulness'] fig, ax = plt.subplots(figsize=(8, 6)) x = [item['arthurValue'] for item in helpfulness_data] y = [item['annaValue'] for item in helpfulness_data] platforms = [item['platform'] for item in helpfulness_data] scatter = ax.scatter(x, y, c='#8884d8', s=100, alpha=0.7) # Add platform labels for i, platform in enumerate(platforms): ax.annotate(platform, (x[i], y[i]), textcoords='offset points', xytext=(0, 10), ha='center') # Add axis labels ax.set_xlabel("Arthur's Rating", fontsize=12) ax.set_ylabel("Anna's Rating", fontsize=12) ax.set_title('Helpfulness Correlation', fontsize=14, fontweight='bold') # Set axis limits ax.set_xlim(0, 2) ax.set_ylim(0, 2) # Add perfect correlation line ax.plot([0, 2], [0, 2], 'k--', alpha=0.3) # Add correlation value text ax.text(0.1, 1.8, f'Correlation: {correlations["helpfulness"]}', fontsize=12, bbox=dict(facecolor='white', alpha=0.5)) plt.grid(True, linestyle='--', alpha=0.3) return plt.tight_layout() _() return @app.cell def _(agreement_data, pass_fail_agreement, pd): def _(): # Create a DataFrame to show platform-specific differences platform_differences = [] for platform in set(item['platform'] for item in agreement_data): helpfulness = next((item for item in agreement_data if item['platform'] == platform and item['category'] == 'Helpfulness'), None) adequate_length = next( (item for item in agreement_data if item['platform'] == platform and item['category'] == 'Adequate Length'), None ) pass_fail = next((item for item in pass_fail_agreement if item['platform'] == platform), None) if helpfulness and adequate_length and pass_fail: helpfulness_diff = helpfulness['arthurValue'] - helpfulness['annaValue'] adequate_length_diff = adequate_length['arthurValue'] - adequate_length['annaValue'] pass_rate_diff = pass_fail['arthur'] - pass_fail['anna'] return platform_differences.append( { 'Platform': platform, 'Helpfulness Diff': helpfulness_diff, 'Adequate Length Diff': adequate_length_diff, 'Pass Rate Diff': pass_rate_diff, 'Agreement': pass_fail['agreement'], } ) platform_diff_df = pd.DataFrame(platform_differences) # Display platform differences platform_diff_df['Helpfulness Diff'] = platform_diff_df['Helpfulness Diff'].round(1) platform_diff_df['Adequate Length Diff'] = platform_diff_df['Adequate Length Diff'].round(1) platform_diff_df['Pass Rate Diff'] = platform_diff_df['Pass Rate Diff'].astype(int) def style_diff(val): if val > 0: return f'Arthur +{abs(val)}' elif val < 0: return f'Anna +{abs(val)}' else: return 'Equal' # Apply styling and display the data styled_platform_diff = platform_diff_df.copy() styled_platform_diff['Helpfulness'] = styled_platform_diff['Helpfulness Diff'].apply(style_diff) styled_platform_diff['Adequate Length'] = styled_platform_diff['Adequate Length Diff'].apply(style_diff) styled_platform_diff['Pass Rate'] = styled_platform_diff['Pass Rate Diff'].apply(style_diff) display_cols = ['Platform', 'Helpfulness', 'Adequate Length', 'Pass Rate', 'Agreement'] display_df = styled_platform_diff[display_cols] _() return @app.cell def _(calculate_average_metrics, np, plt): def plot_average_scores(): """Plot the average scores for each category by evaluator""" # Get average data avg_df = calculate_average_metrics() # Set up plot plt.figure(figsize=(10, 6)) # Set width of bars bar_width = 0.35 x = np.arange(len(avg_df)) # Create bars plt.bar( x - bar_width / 2, avg_df['Arthur'], width=bar_width, label="Arthur's Avg. Score", color='#8884d8', alpha=0.8, edgecolor='white', linewidth=1.5, ) plt.bar( x + bar_width / 2, avg_df['Anna'], width=bar_width, label="Anna's Avg. Score", color='#82ca9d', alpha=0.8, edgecolor='white', linewidth=1.5, ) # Add data labels for i in range(len(x)): plt.text( x[i] - bar_width / 2, avg_df['Arthur'][i] + 0.05, f'{avg_df["Arthur"][i]:.2f}', ha='center', va='bottom', color='#333', fontweight='bold', ) plt.text( x[i] + bar_width / 2, avg_df['Anna'][i] + 0.05, f'{avg_df["Anna"][i]:.2f}', ha='center', va='bottom', color='#333', fontweight='bold', ) # Customize plot plt.xlabel('Evaluation Category', fontsize=12, fontweight='bold') plt.ylabel('Average Score (0-2 scale)', fontsize=12, fontweight='bold') plt.title('Average Scores by Evaluator', fontsize=14, fontweight='bold') plt.xticks(x, avg_df['Category'], fontsize=11) plt.ylim(0, 2.2) # Set reasonable y-axis limit plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), shadow=True, ncol=2) plt.grid(axis='y', linestyle='--', alpha=0.7) # Add a border to the plot ax = plt.gca() for spine in ax.spines.values(): spine.set_edgecolor('#dddddd') spine.set_linewidth(1.5) plt.tight_layout() return plt.gca() return (plot_average_scores,) @app.cell def _(agreement_data, pass_fail_agreement, pd): def calculate_average_metrics(): """Calculate average metrics for each evaluator and category""" # Process helpfulness data helpfulness_data = [item for item in agreement_data if item['category'] == 'Helpfulness'] arthur_helpfulness = sum(item['arthurValue'] for item in helpfulness_data) / len(helpfulness_data) anna_helpfulness = sum(item['annaValue'] for item in helpfulness_data) / len(helpfulness_data) # Process adequate length data adequate_length_data = [item for item in agreement_data if item['category'] == 'Adequate Length'] arthur_adequate = sum(item['arthurValue'] for item in adequate_length_data) / len(adequate_length_data) anna_adequate = sum(item['annaValue'] for item in adequate_length_data) / len(adequate_length_data) # Create DataFrame with results avg_df = pd.DataFrame( { 'Category': ['Helpfulness', 'Adequate Length'], 'Arthur': [arthur_helpfulness, arthur_adequate], 'Anna': [anna_helpfulness, anna_adequate], } ) return avg_df # Count agreement vs disagreement agree_count = sum(1 for item in pass_fail_agreement if item['agreement'] == 'Agree') disagree_count = sum(1 for item in pass_fail_agreement if item['agreement'] == 'Disagree') return agree_count, calculate_average_metrics, disagree_count @app.cell def _(plot_average_scores): plot_average_scores() return @app.cell def _(agree_count, ax, calculate_average_metrics, disagree_count, np, plt): def interactive_evaluator_dashboard(): """Display an interactive dashboard for evaluator analysis""" from IPython.display import display, Markdown, HTML # Display header display( HTML("""

Evaluator Comparison Analysis

Analyzing differences between Arthur's and Anna's evaluations

""") ) # Display Agreement Section display(Markdown('## Agreement Overview')) # Create side-by-side visualizations fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 7)) # Agreement Pie Chart labels = ['Agreement', 'Disagreement'] sizes = [agree_count, disagree_count] colors = ['#4CAF50', '#F44336'] explode = (0.1, 0) ax1.pie( sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=140, textprops={'fontsize': 12, 'fontweight': 'bold'}, ) ax1.set_title('Evaluator Pass/Fail Agreement', fontsize=16, fontweight='bold') # Average Scores Bar Chart avg_df = calculate_average_metrics() # Set width of bars bar_width = 0.35 x = np.arange(len(avg_df)) # Create bars ax2.bar(x - bar_width / 2, avg_df['Arthur'], width=bar_width, label="Arthur's Avg", color='#8884d8', edgecolor='white', linewidth=1.5) ax2.bar(x + bar_width / 2, avg_df['Anna'], width=bar_width, label="Anna's Avg", color='#82ca9d', edgecolor='white', linewidth=1.5) # Add data labels for i in range(len(x)): ax2.text( x[i] - bar_width / 2, avg_df['Arthur'][i] + 0.05, f'{avg_df["Arthur"][i]:.2f}', ha='center', va='bottom', fontweight='bold', fontsize=10, ) ax2.text( x[i] + bar_width / 2, avg_df['Anna'][i] + 0.05, f'{avg_df["Anna"][i]:.2f}', ha='center', va='bottom', fontweight='bold', fontsize=10, ) # Customize plot ax2.set_xlabel('Category', fontsize=12, fontweight='bold') ax2.set_ylabel('Average Score', fontsize=12, fontweight='bold') ax return (interactive_evaluator_dashboard,) @app.cell def _(interactive_evaluator_dashboard): interactive_evaluator_dashboard() return if __name__ == "__main__": app.run()