Spaces:
Runtime error
Runtime error
| import gdown | |
| from dotenv import load_dotenv | |
| import datetime | |
| import openai | |
| import uuid | |
| import gradio as gr | |
| from langchain.embeddings import OpenAIEmbeddings | |
| from langchain.vectorstores import Chroma | |
| from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.chains import RetrievalQA | |
| import os | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain import OpenAI | |
| from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader | |
| from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader | |
| from collections import deque | |
| import re | |
| from bs4 import BeautifulSoup | |
| import requests | |
| from urllib.parse import urlparse | |
| import mimetypes | |
| from pathlib import Path | |
| import tiktoken | |
| from ttyd_functions import * | |
| from ttyd_consts import * | |
| ############################################################################################### | |
| load_dotenv() | |
| # select the mode at runtime when starting container - modes options are in ttyd_consts.py | |
| if (os.getenv("TTYD_MODE",'')).split('_')[0]=='personalBot': | |
| mode = mode_arslan | |
| gDriveUrl = (os.getenv("GDRIVE_FOLDER_URL",'')).replace('?usp=sharing','') | |
| # output folder of googe drive folder will be taken as input dir of personalBot | |
| gdown.download_folder(url=gDriveUrl, output=mode.inputDir, quiet=True) | |
| if os.getenv("TTYD_MODE",'')!='personalBot_arslan': | |
| mode.title='' | |
| mode.welcomeMsg='' | |
| elif os.getenv("TTYD_MODE",'')=='nustian': | |
| mode = mode_nustian | |
| else: | |
| mode = mode_general | |
| if mode.type!='userInputDocs': | |
| # local vector store as opposed to gradio state vector store | |
| vsDict_hard = localData_vecStore(os.getenv("OPENAI_API_KEY"), inputDir=mode.inputDir, file_list=mode.file_list, url_list=mode.url_list) | |
| ############################################################################################### | |
| # Gradio | |
| ############################################################################################### | |
| # initialize chatbot function sets the QA Chain, and also sets/updates any other components to start chatting. updateQaChain function only updates QA chain and will be called whenever Adv Settings are updated. | |
| def initializeChatbot(temp, k, modelName, stdlQs, api_key_st, vsDict_st, progress=gr.Progress()): | |
| progress(0.1, waitText_initialize) | |
| qa_chain_st = updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st) | |
| progress(0.5, waitText_initialize) | |
| #generate welcome message | |
| if mode.welcomeMsg: | |
| welMsg = mode.welcomeMsg | |
| else: | |
| welMsg = qa_chain_st({'question': initialize_prompt, 'chat_history':[]})['answer'] | |
| print('Chatbot initialized at ', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) | |
| # exSamples = generateExamples(api_key_st, vsDict_st) | |
| # exSamples_vis = True if exSamples[0] else False | |
| return qa_chain_st, btn.update(interactive=True), initChatbot_btn.update('Chatbot ready. Now visit the chatbot Tab.', interactive=False)\ | |
| , aKey_tb.update(), gr.Tabs.update(selected='cb'), chatbot.update(value=[('', welMsg)]) | |
| def setApiKey(api_key): | |
| api_key = transformApi(api_key) | |
| try: | |
| openai.Model.list(api_key=api_key) # test the API key | |
| api_key_st = api_key | |
| return aKey_tb.update('API Key accepted', interactive=False, type='text'), aKey_btn.update(interactive=False), api_key_st | |
| except Exception as e: | |
| return aKey_tb.update(str(e), type='text'), *[x.update() for x in [aKey_btn, api_key_state]] | |
| # convert user uploaded data to vectorstore | |
| def uiData_vecStore(userFiles, userUrls, api_key_st, vsDict_st={}, progress=gr.Progress()): | |
| opComponents = [data_ingest_btn, upload_fb, urls_tb] | |
| # parse user data | |
| file_paths = [] | |
| documents = [] | |
| if userFiles is not None: | |
| if not isinstance(userFiles, list): userFiles = [userFiles] | |
| file_paths = [file.name for file in userFiles] | |
| userUrls = [x.strip() for x in userUrls.split(",")] if userUrls else [] | |
| #create documents | |
| documents = data_ingestion(file_list=file_paths, url_list=userUrls, prog=progress) | |
| if documents: | |
| for file in file_paths: | |
| os.remove(file) | |
| else: | |
| return {}, '', *[x.update() for x in opComponents] | |
| # Splitting and Chunks | |
| docs = split_docs(documents) | |
| # Embeddings | |
| try: | |
| api_key_st='Null' if api_key_st is None or api_key_st=='' else api_key_st | |
| openai.Model.list(api_key=api_key_st) # test the API key | |
| embeddings = OpenAIEmbeddings(openai_api_key=api_key_st) | |
| except Exception as e: | |
| return {}, str(e), *[x.update() for x in opComponents] | |
| progress(0.5, 'Creating Vector Database') | |
| vsDict_st = getVsDict(embeddings, docs, vsDict_st) | |
| # get sources from metadata | |
| src_str = getSourcesFromMetadata(vsDict_st['chromaClient'].get()['metadatas']) | |
| src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0] | |
| progress(1, 'Data loaded') | |
| return vsDict_st, src_str, *[x.update(interactive=False) for x in [data_ingest_btn, upload_fb]], urls_tb.update(interactive=False, placeholder='') | |
| # just update the QA Chain, no updates to any UI | |
| def updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st): | |
| # if we are not adding data from ui, then use vsDict_hard as vectorstore | |
| if vsDict_st=={} and mode.type!='userInputDocs': vsDict_st=vsDict_hard | |
| modelName = modelName.split('(')[0].strip() # so we can provide any info in brackets | |
| # check if the input model is chat model or legacy model | |
| try: | |
| ChatOpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('') | |
| llm = ChatOpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName) | |
| except: | |
| OpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('') | |
| llm = OpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName) | |
| # settingsUpdated = 'Settings updated:'+ ' Model=' + modelName + ', Temp=' + str(temp)+ ', k=' + str(k) | |
| # gr.Info(settingsUpdated) | |
| # Now create QA Chain using the LLM | |
| if stdlQs==0: # 0th index i.e. first option | |
| qa_chain_st = RetrievalQA.from_llm( | |
| llm=llm, | |
| retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}), | |
| return_source_documents=True, | |
| input_key = 'question', output_key='answer' # to align with ConversationalRetrievalChain for downstream functions | |
| ) | |
| else: | |
| rephQs = False if stdlQs==1 else True | |
| qa_chain_st = ConversationalRetrievalChain.from_llm( | |
| llm=llm, | |
| retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}), | |
| rephrase_question=rephQs, | |
| return_source_documents=True, | |
| return_generated_question=True | |
| ) | |
| return qa_chain_st | |
| def respond(message, chat_history, qa_chain): | |
| result = qa_chain({'question': message, "chat_history": [tuple(x) for x in chat_history]}) | |
| src_docs = getSourcesFromMetadata([x.metadata for x in result["source_documents"]], sourceOnly=False)[0] | |
| # streaming | |
| streaming_answer = "" | |
| for ele in "".join(result['answer']): | |
| streaming_answer += ele | |
| yield "", chat_history + [(message, streaming_answer)], src_docs, btn.update('Please wait...', interactive=False) | |
| chat_history.extend([(message, result['answer'])]) | |
| yield "", chat_history, src_docs, btn.update('Send Message', interactive=True) | |
| ##################################################################################################### | |
| with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray', neutral_hue='blue'), css="footer {visibility: hidden}") as demo: | |
| # Initialize state variables - stored in this browser session - these can only be used within input or output of .click/.submit etc, not as a python var coz they are not stored in backend, only as a frontend gradio component | |
| # but if you initialize it with a default value, that value will be stored in backend and accessible across all users. You can also change it with statear.value='newValue' | |
| qa_state = gr.State() | |
| api_key_state = gr.State(os.getenv("OPENAI_API_KEY") if mode.type=='personalBot' else 'Null') | |
| chromaVS_state = gr.State({}) | |
| # Setup the Gradio Layout | |
| gr.Markdown(mode.title) | |
| with gr.Tabs() as tabs: | |
| with gr.Tab('Initialization', id='init'): | |
| with gr.Row(): | |
| with gr.Column(): | |
| aKey_tb = gr.Textbox(label="OpenAI API Key", type='password'\ | |
| , info='You can find OpenAI API key at https://platform.openai.com/account/api-keys'\ | |
| , placeholder='Enter your API key here and hit enter to begin chatting') | |
| aKey_btn = gr.Button("Submit API Key") | |
| with gr.Row(visible=mode.uiAddDataVis): | |
| upload_fb = gr.Files(scale=5, label="Upload (multiple) Files - pdf/txt/docx supported", file_types=['.doc', '.docx', 'text', '.pdf', '.csv']) | |
| urls_tb = gr.Textbox(scale=5, label="Enter URLs starting with https (comma separated)"\ | |
| , info=url_tb_info\ | |
| , placeholder=url_tb_ph) | |
| data_ingest_btn = gr.Button("Load Data") | |
| status_tb = gr.TextArea(label='Status bar', show_label=False, visible=mode.uiAddDataVis) | |
| initChatbot_btn = gr.Button("Initialize Chatbot", variant="primary") | |
| with gr.Tab('Chatbot', id='cb'): | |
| with gr.Row(): | |
| chatbot = gr.Chatbot(label="Chat History", scale=2) | |
| srcDocs = gr.TextArea(label="References") | |
| msg = gr.Textbox(label="User Input",placeholder="Type your questions here") | |
| with gr.Row(): | |
| btn = gr.Button("Send Message", interactive=False, variant="primary") | |
| clear = gr.ClearButton(components=[msg, chatbot, srcDocs], value="Clear chat history") | |
| # exp_comp = gr.Dataset(scale=0.7, samples=[['123'],['456'], ['123'],['456'],['456']], components=[msg], label='Examples (auto generated by LLM)', visible=False) | |
| # gr.Examples(examples=exps, inputs=msg) | |
| with gr.Accordion("Advance Settings - click to expand", open=False): | |
| with gr.Row(): | |
| with gr.Column(): | |
| temp_sld = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", info='Sampling temperature to use when calling LLM. Defaults to 0.7') | |
| k_sld = gr.Slider(minimum=1, maximum=10, step=1, value=mode.k, label="K", info='Number of relavant documents to return from Vector Store. Defaults to 4') | |
| model_dd = gr.Dropdown(label='Model Name'\ | |
| , choices=model_dd_choices\ | |
| , value=model_dd_choices[0], allow_custom_value=True\ | |
| , info=model_dd_info) | |
| stdlQs_rb = gr.Radio(label='Standalone Question', info=stdlQs_rb_info\ | |
| , type='index', value=stdlQs_rb_choices[1]\ | |
| , choices=stdlQs_rb_choices) | |
| ### Setup the Gradio Event Listeners | |
| # API button | |
| aKey_btn_args = {'fn':setApiKey, 'inputs':[aKey_tb], 'outputs':[aKey_tb, aKey_btn, api_key_state]} | |
| aKey_btn.click(**aKey_btn_args) | |
| aKey_tb.submit(**aKey_btn_args) | |
| # Data Ingest Button | |
| data_ingest_event = data_ingest_btn.click(uiData_vecStore, [upload_fb, urls_tb, api_key_state, chromaVS_state], [chromaVS_state, status_tb, data_ingest_btn, upload_fb, urls_tb]) | |
| # Adv Settings | |
| advSet_args = {'fn':updateQaChain, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state]} | |
| temp_sld.release(**advSet_args) | |
| k_sld.release(**advSet_args) | |
| model_dd.change(**advSet_args) | |
| stdlQs_rb.change(**advSet_args) | |
| # Initialize button | |
| initCb_args = {'fn':initializeChatbot, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state, btn, initChatbot_btn, aKey_tb, tabs, chatbot]} | |
| if mode.type=='personalBot': | |
| demo.load(**initCb_args) # load Chatbot UI directly on startup | |
| initChatbot_btn.click(**initCb_args) | |
| # Chatbot submit button | |
| chat_btn_args = {'fn':respond, 'inputs':[msg, chatbot, qa_state], 'outputs':[msg, chatbot, srcDocs, btn]} | |
| btn.click(**chat_btn_args) | |
| msg.submit(**chat_btn_args) | |
| demo.queue(concurrency_count=10) | |
| demo.launch(show_error=True) |