import spaces import os import json import time import torch from PIL import Image from tqdm import tqdm import gradio as gr from safetensors.torch import save_file from src.pipeline import FluxPipeline from src.transformer_flux import FluxTransformer2DModel from src.lora_helper import set_single_lora, set_multi_lora, unset_lora # Initialize the image processor base_path = "black-forest-labs/FLUX.1-dev" lora_base_path = "./models" # Environment variable for API token (set this in your Hugging Face space settings) API_TOKEN = os.environ.get("HF_TOKEN") pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16) transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16) pipe.transformer = transformer pipe.to("cuda") def clear_cache(transformer): for name, attn_processor in transformer.attn_processors.items(): attn_processor.bank_kv.clear() # Define the Gradio interface with token verification @spaces.GPU() def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type, api_token=""): # Check if API token is required and valid if API_TOKEN and api_token != API_TOKEN: return "ERROR: Invalid API token. Please provide a valid token to generate images." try: # Ensure height and width are divisible by 8 height = int(height) width = int(width) if height % 8 != 0 or width % 8 != 0: # Adjust to nearest multiple of 8 height = (height // 8) * 8 width = (width // 8) * 8 print(f"Dimensions adjusted to be divisible by 8: {height}x{width}") # Set the control type if control_type == "Ghibli": lora_path = os.path.join(lora_base_path, "Ghibli.safetensors") set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512) # Process the image spatial_imgs = [spatial_img] if spatial_img else [] image = pipe( prompt, height=height, width=width, guidance_scale=3.5, num_inference_steps=25, max_sequence_length=512, generator=torch.Generator("cpu").manual_seed(seed), subject_images=[], spatial_images=spatial_imgs, cond_size=512, ).images[0] clear_cache(pipe.transformer) return image except Exception as e: error_message = f"Error during generation: {str(e)}" print(error_message) return f"ERROR: {error_message}" # Define the Gradio interface components control_types = ["Ghibli"] # Create the Gradio Blocks interface with gr.Blocks() as demo: gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl") # Only show token field if API token is required if API_TOKEN: gr.Markdown("⚠️ **AUTHENTICATION REQUIRED**: Please enter your API token to use this service.") api_token = gr.Textbox(label="API Token", type="password", value="") else: api_token = gr.Textbox(visible=False, value="") # Hidden field with empty value gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.") gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Due to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.)") gr.Markdown("**[Attention!!]**:The recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`") gr.Markdown("😊😊If you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))") gr.Markdown("**NOTE**: Both height and width must be divisible by 8. Values will be automatically adjusted if needed.") with gr.Tab("Ghibli Condition Generation"): with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", value="Ghibli Studio style, Charming hand-drawn anime-style illustration") spatial_img = gr.Image(label="Ghibli Image", type="pil") height = gr.Slider(minimum=256, maximum=1024, step=8, label="Height", value=768) width = gr.Slider(minimum=256, maximum=1024, step=8, label="Width", value=768) seed = gr.Number(label="Seed", value=42) control_type = gr.Dropdown(choices=control_types, label="Control Type", value="Ghibli") single_generate_btn = gr.Button("Generate Image") with gr.Column(): single_output_image = gr.Image(label="Generated Image") # Set up examples (with token automatically added if present) example_inputs = [prompt, spatial_img, height, width, seed, control_type] if API_TOKEN: # Add token to examples for convenience example_data = [ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli", API_TOKEN], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli", API_TOKEN], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli", API_TOKEN], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli", API_TOKEN], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli", API_TOKEN], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli", API_TOKEN], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli", API_TOKEN], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli", API_TOKEN], ] example_inputs.append(api_token) else: # Use examples without token example_data = [ ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli"], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli"], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli"], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli"], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli"], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli"], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli"], ["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli"], ] gr.Examples( examples=example_data, inputs=example_inputs, outputs=single_output_image, fn=single_condition_generate_image, cache_examples=False, label="Single Condition Examples" ) # Link the buttons to the functions with API token included inputs = [prompt, spatial_img, height, width, seed, control_type] if API_TOKEN: inputs.append(api_token) single_generate_btn.click( single_condition_generate_image, inputs=inputs, outputs=single_output_image ) # Launch the Gradio app demo.queue().launch()