Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,6 @@ import torch
|
|
6 |
from PIL import Image
|
7 |
from tqdm import tqdm
|
8 |
import gradio as gr
|
9 |
-
import base64
|
10 |
-
import io
|
11 |
|
12 |
from safetensors.torch import save_file
|
13 |
from src.pipeline import FluxPipeline
|
@@ -19,9 +17,8 @@ base_path = "black-forest-labs/FLUX.1-dev"
|
|
19 |
lora_base_path = "./models"
|
20 |
|
21 |
# Environment variable for API token (set this in your Hugging Face space settings)
|
22 |
-
API_TOKEN = os.environ.get("
|
23 |
|
24 |
-
# Initialize the pipeline
|
25 |
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
|
26 |
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
|
27 |
pipe.transformer = transformer
|
@@ -31,100 +28,52 @@ def clear_cache(transformer):
|
|
31 |
for name, attn_processor in transformer.attn_processors.items():
|
32 |
attn_processor.bank_kv.clear()
|
33 |
|
34 |
-
# Token verification function
|
35 |
-
def verify_token(token):
|
36 |
-
"""Verify if the provided token matches the API token"""
|
37 |
-
return API_TOKEN and token == API_TOKEN
|
38 |
-
|
39 |
# Define the Gradio interface with token verification
|
40 |
@spaces.GPU()
|
41 |
-
def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type, api_token=""
|
42 |
-
# Check
|
43 |
-
if
|
44 |
-
return "
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
|
51 |
-
|
52 |
-
# Process the image
|
53 |
-
spatial_imgs = [spatial_img] if spatial_img else []
|
54 |
-
image = pipe(
|
55 |
-
prompt,
|
56 |
-
height=int(height),
|
57 |
-
width=int(width),
|
58 |
-
guidance_scale=3.5,
|
59 |
-
num_inference_steps=25,
|
60 |
-
max_sequence_length=512,
|
61 |
-
generator=torch.Generator("cpu").manual_seed(seed),
|
62 |
-
subject_images=[],
|
63 |
-
spatial_images=spatial_imgs,
|
64 |
-
cond_size=512,
|
65 |
-
).images[0]
|
66 |
-
clear_cache(pipe.transformer)
|
67 |
-
|
68 |
-
# We'll always return the PIL image for UI
|
69 |
-
# The API will extract base64 from the returned image
|
70 |
-
return image
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
)
|
89 |
-
|
90 |
-
if image is None or isinstance(image, str):
|
91 |
-
# Error occurred
|
92 |
-
error_msg = image if isinstance(image, str) else "Image generation failed"
|
93 |
-
return {"error": error_msg}
|
94 |
-
|
95 |
-
# Return the image directly instead of converting to base64
|
96 |
-
return image
|
97 |
-
|
98 |
-
except Exception as e:
|
99 |
-
error_msg = f"API error: {str(e)}"
|
100 |
-
print(error_msg)
|
101 |
-
return {"error": error_msg}
|
102 |
|
103 |
# Define the Gradio interface components
|
104 |
control_types = ["Ghibli"]
|
105 |
|
106 |
-
# Example data - add the API token for convenience (assuming only you can see the examples)
|
107 |
-
single_examples = [
|
108 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli", API_TOKEN],
|
109 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli", API_TOKEN],
|
110 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli", API_TOKEN],
|
111 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli", API_TOKEN],
|
112 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli", API_TOKEN],
|
113 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli", API_TOKEN],
|
114 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli", API_TOKEN],
|
115 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli", API_TOKEN],
|
116 |
-
]
|
117 |
-
|
118 |
# Create the Gradio Blocks interface
|
119 |
with gr.Blocks() as demo:
|
120 |
gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl")
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.")
|
123 |
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Due to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.)")
|
124 |
|
125 |
-
# Authentication input - visible at the top of the interface
|
126 |
-
api_token = gr.Textbox(label="API Token (Required)", type="password", value="")
|
127 |
-
|
128 |
gr.Markdown("**[Attention!!]**:The recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`")
|
129 |
gr.Markdown("😊😊If you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))")
|
130 |
|
@@ -141,31 +90,53 @@ with gr.Blocks() as demo:
|
|
141 |
with gr.Column():
|
142 |
single_output_image = gr.Image(label="Generated Image")
|
143 |
|
144 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
gr.Examples(
|
146 |
-
examples=
|
147 |
-
inputs=
|
148 |
outputs=single_output_image,
|
149 |
fn=single_condition_generate_image,
|
150 |
cache_examples=False,
|
151 |
label="Single Condition Examples"
|
152 |
)
|
153 |
|
154 |
-
# Link the buttons to the functions
|
|
|
|
|
|
|
|
|
155 |
single_generate_btn.click(
|
156 |
single_condition_generate_image,
|
157 |
-
inputs=
|
158 |
outputs=single_output_image
|
159 |
)
|
160 |
|
161 |
-
# Create an API endpoint that clients can use programmatically
|
162 |
-
demo.queue()
|
163 |
-
|
164 |
-
# Add the API endpoint
|
165 |
-
demo.load(api_generate_image,
|
166 |
-
inputs=[prompt, spatial_img, height, width, seed, control_type, api_token],
|
167 |
-
outputs=gr.JSON(),
|
168 |
-
api_name="generate")
|
169 |
-
|
170 |
# Launch the Gradio app
|
171 |
-
demo.launch()
|
|
|
6 |
from PIL import Image
|
7 |
from tqdm import tqdm
|
8 |
import gradio as gr
|
|
|
|
|
9 |
|
10 |
from safetensors.torch import save_file
|
11 |
from src.pipeline import FluxPipeline
|
|
|
17 |
lora_base_path = "./models"
|
18 |
|
19 |
# Environment variable for API token (set this in your Hugging Face space settings)
|
20 |
+
API_TOKEN = os.environ.get("HF_TOKEN")
|
21 |
|
|
|
22 |
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
|
23 |
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
|
24 |
pipe.transformer = transformer
|
|
|
28 |
for name, attn_processor in transformer.attn_processors.items():
|
29 |
attn_processor.bank_kv.clear()
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
# Define the Gradio interface with token verification
|
32 |
@spaces.GPU()
|
33 |
+
def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type, api_token=""):
|
34 |
+
# Check if API token is required and valid
|
35 |
+
if API_TOKEN and api_token != API_TOKEN:
|
36 |
+
return "ERROR: Invalid API token. Please provide a valid token to generate images."
|
37 |
|
38 |
+
# Set the control type
|
39 |
+
if control_type == "Ghibli":
|
40 |
+
lora_path = os.path.join(lora_base_path, "Ghibli.safetensors")
|
41 |
+
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Process the image
|
44 |
+
spatial_imgs = [spatial_img] if spatial_img else []
|
45 |
+
image = pipe(
|
46 |
+
prompt,
|
47 |
+
height=int(height),
|
48 |
+
width=int(width),
|
49 |
+
guidance_scale=3.5,
|
50 |
+
num_inference_steps=25,
|
51 |
+
max_sequence_length=512,
|
52 |
+
generator=torch.Generator("cpu").manual_seed(seed),
|
53 |
+
subject_images=[],
|
54 |
+
spatial_images=spatial_imgs,
|
55 |
+
cond_size=512,
|
56 |
+
).images[0]
|
57 |
+
clear_cache(pipe.transformer)
|
58 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
# Define the Gradio interface components
|
61 |
control_types = ["Ghibli"]
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Create the Gradio Blocks interface
|
64 |
with gr.Blocks() as demo:
|
65 |
gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl")
|
66 |
+
|
67 |
+
# Only show token field if API token is required
|
68 |
+
if API_TOKEN:
|
69 |
+
gr.Markdown("⚠️ **AUTHENTICATION REQUIRED**: Please enter your API token to use this service.")
|
70 |
+
api_token = gr.Textbox(label="API Token", type="password", value="")
|
71 |
+
else:
|
72 |
+
api_token = gr.Textbox(visible=False, value="") # Hidden field with empty value
|
73 |
+
|
74 |
gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.")
|
75 |
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Due to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.)")
|
76 |
|
|
|
|
|
|
|
77 |
gr.Markdown("**[Attention!!]**:The recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`")
|
78 |
gr.Markdown("😊😊If you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))")
|
79 |
|
|
|
90 |
with gr.Column():
|
91 |
single_output_image = gr.Image(label="Generated Image")
|
92 |
|
93 |
+
# Set up examples (with token automatically added if present)
|
94 |
+
example_inputs = [prompt, spatial_img, height, width, seed, control_type]
|
95 |
+
if API_TOKEN:
|
96 |
+
# Add token to examples for convenience
|
97 |
+
example_data = [
|
98 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli", API_TOKEN],
|
99 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli", API_TOKEN],
|
100 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli", API_TOKEN],
|
101 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli", API_TOKEN],
|
102 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli", API_TOKEN],
|
103 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli", API_TOKEN],
|
104 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli", API_TOKEN],
|
105 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli", API_TOKEN],
|
106 |
+
]
|
107 |
+
example_inputs.append(api_token)
|
108 |
+
else:
|
109 |
+
# Use examples without token
|
110 |
+
example_data = [
|
111 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli"],
|
112 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli"],
|
113 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli"],
|
114 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli"],
|
115 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli"],
|
116 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli"],
|
117 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli"],
|
118 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli"],
|
119 |
+
]
|
120 |
+
|
121 |
gr.Examples(
|
122 |
+
examples=example_data,
|
123 |
+
inputs=example_inputs,
|
124 |
outputs=single_output_image,
|
125 |
fn=single_condition_generate_image,
|
126 |
cache_examples=False,
|
127 |
label="Single Condition Examples"
|
128 |
)
|
129 |
|
130 |
+
# Link the buttons to the functions with API token included
|
131 |
+
inputs = [prompt, spatial_img, height, width, seed, control_type]
|
132 |
+
if API_TOKEN:
|
133 |
+
inputs.append(api_token)
|
134 |
+
|
135 |
single_generate_btn.click(
|
136 |
single_condition_generate_image,
|
137 |
+
inputs=inputs,
|
138 |
outputs=single_output_image
|
139 |
)
|
140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
# Launch the Gradio app
|
142 |
+
demo.queue().launch()
|