Update app.py
Browse files
app.py
CHANGED
|
@@ -6,8 +6,6 @@ import torch
|
|
| 6 |
from PIL import Image
|
| 7 |
from tqdm import tqdm
|
| 8 |
import gradio as gr
|
| 9 |
-
import base64
|
| 10 |
-
import io
|
| 11 |
|
| 12 |
from safetensors.torch import save_file
|
| 13 |
from src.pipeline import FluxPipeline
|
|
@@ -19,9 +17,8 @@ base_path = "black-forest-labs/FLUX.1-dev"
|
|
| 19 |
lora_base_path = "./models"
|
| 20 |
|
| 21 |
# Environment variable for API token (set this in your Hugging Face space settings)
|
| 22 |
-
API_TOKEN = os.environ.get("
|
| 23 |
|
| 24 |
-
# Initialize the pipeline
|
| 25 |
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
|
| 26 |
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
|
| 27 |
pipe.transformer = transformer
|
|
@@ -31,100 +28,52 @@ def clear_cache(transformer):
|
|
| 31 |
for name, attn_processor in transformer.attn_processors.items():
|
| 32 |
attn_processor.bank_kv.clear()
|
| 33 |
|
| 34 |
-
# Token verification function
|
| 35 |
-
def verify_token(token):
|
| 36 |
-
"""Verify if the provided token matches the API token"""
|
| 37 |
-
return API_TOKEN and token == API_TOKEN
|
| 38 |
-
|
| 39 |
# Define the Gradio interface with token verification
|
| 40 |
@spaces.GPU()
|
| 41 |
-
def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type, api_token=""
|
| 42 |
-
# Check
|
| 43 |
-
if
|
| 44 |
-
return "
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
|
| 51 |
-
|
| 52 |
-
# Process the image
|
| 53 |
-
spatial_imgs = [spatial_img] if spatial_img else []
|
| 54 |
-
image = pipe(
|
| 55 |
-
prompt,
|
| 56 |
-
height=int(height),
|
| 57 |
-
width=int(width),
|
| 58 |
-
guidance_scale=3.5,
|
| 59 |
-
num_inference_steps=25,
|
| 60 |
-
max_sequence_length=512,
|
| 61 |
-
generator=torch.Generator("cpu").manual_seed(seed),
|
| 62 |
-
subject_images=[],
|
| 63 |
-
spatial_images=spatial_imgs,
|
| 64 |
-
cond_size=512,
|
| 65 |
-
).images[0]
|
| 66 |
-
clear_cache(pipe.transformer)
|
| 67 |
-
|
| 68 |
-
# We'll always return the PIL image for UI
|
| 69 |
-
# The API will extract base64 from the returned image
|
| 70 |
-
return image
|
| 71 |
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
if image is None or isinstance(image, str):
|
| 91 |
-
# Error occurred
|
| 92 |
-
error_msg = image if isinstance(image, str) else "Image generation failed"
|
| 93 |
-
return {"error": error_msg}
|
| 94 |
-
|
| 95 |
-
# Return the image directly instead of converting to base64
|
| 96 |
-
return image
|
| 97 |
-
|
| 98 |
-
except Exception as e:
|
| 99 |
-
error_msg = f"API error: {str(e)}"
|
| 100 |
-
print(error_msg)
|
| 101 |
-
return {"error": error_msg}
|
| 102 |
|
| 103 |
# Define the Gradio interface components
|
| 104 |
control_types = ["Ghibli"]
|
| 105 |
|
| 106 |
-
# Example data - add the API token for convenience (assuming only you can see the examples)
|
| 107 |
-
single_examples = [
|
| 108 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli", API_TOKEN],
|
| 109 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli", API_TOKEN],
|
| 110 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli", API_TOKEN],
|
| 111 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli", API_TOKEN],
|
| 112 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli", API_TOKEN],
|
| 113 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli", API_TOKEN],
|
| 114 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli", API_TOKEN],
|
| 115 |
-
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli", API_TOKEN],
|
| 116 |
-
]
|
| 117 |
-
|
| 118 |
# Create the Gradio Blocks interface
|
| 119 |
with gr.Blocks() as demo:
|
| 120 |
gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl")
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.")
|
| 123 |
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.οΌDue to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.οΌ")
|
| 124 |
|
| 125 |
-
# Authentication input - visible at the top of the interface
|
| 126 |
-
api_token = gr.Textbox(label="API Token (Required)", type="password", value="")
|
| 127 |
-
|
| 128 |
gr.Markdown("**[Attention!!]**οΌThe recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`")
|
| 129 |
gr.Markdown("ππIf you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))")
|
| 130 |
|
|
@@ -141,31 +90,53 @@ with gr.Blocks() as demo:
|
|
| 141 |
with gr.Column():
|
| 142 |
single_output_image = gr.Image(label="Generated Image")
|
| 143 |
|
| 144 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
gr.Examples(
|
| 146 |
-
examples=
|
| 147 |
-
inputs=
|
| 148 |
outputs=single_output_image,
|
| 149 |
fn=single_condition_generate_image,
|
| 150 |
cache_examples=False,
|
| 151 |
label="Single Condition Examples"
|
| 152 |
)
|
| 153 |
|
| 154 |
-
# Link the buttons to the functions
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
single_generate_btn.click(
|
| 156 |
single_condition_generate_image,
|
| 157 |
-
inputs=
|
| 158 |
outputs=single_output_image
|
| 159 |
)
|
| 160 |
|
| 161 |
-
# Create an API endpoint that clients can use programmatically
|
| 162 |
-
demo.queue()
|
| 163 |
-
|
| 164 |
-
# Add the API endpoint
|
| 165 |
-
demo.load(api_generate_image,
|
| 166 |
-
inputs=[prompt, spatial_img, height, width, seed, control_type, api_token],
|
| 167 |
-
outputs=gr.JSON(),
|
| 168 |
-
api_name="generate")
|
| 169 |
-
|
| 170 |
# Launch the Gradio app
|
| 171 |
-
demo.launch()
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
from tqdm import tqdm
|
| 8 |
import gradio as gr
|
|
|
|
|
|
|
| 9 |
|
| 10 |
from safetensors.torch import save_file
|
| 11 |
from src.pipeline import FluxPipeline
|
|
|
|
| 17 |
lora_base_path = "./models"
|
| 18 |
|
| 19 |
# Environment variable for API token (set this in your Hugging Face space settings)
|
| 20 |
+
API_TOKEN = os.environ.get("HF_TOKEN")
|
| 21 |
|
|
|
|
| 22 |
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
|
| 23 |
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
|
| 24 |
pipe.transformer = transformer
|
|
|
|
| 28 |
for name, attn_processor in transformer.attn_processors.items():
|
| 29 |
attn_processor.bank_kv.clear()
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Define the Gradio interface with token verification
|
| 32 |
@spaces.GPU()
|
| 33 |
+
def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type, api_token=""):
|
| 34 |
+
# Check if API token is required and valid
|
| 35 |
+
if API_TOKEN and api_token != API_TOKEN:
|
| 36 |
+
return "ERROR: Invalid API token. Please provide a valid token to generate images."
|
| 37 |
|
| 38 |
+
# Set the control type
|
| 39 |
+
if control_type == "Ghibli":
|
| 40 |
+
lora_path = os.path.join(lora_base_path, "Ghibli.safetensors")
|
| 41 |
+
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Process the image
|
| 44 |
+
spatial_imgs = [spatial_img] if spatial_img else []
|
| 45 |
+
image = pipe(
|
| 46 |
+
prompt,
|
| 47 |
+
height=int(height),
|
| 48 |
+
width=int(width),
|
| 49 |
+
guidance_scale=3.5,
|
| 50 |
+
num_inference_steps=25,
|
| 51 |
+
max_sequence_length=512,
|
| 52 |
+
generator=torch.Generator("cpu").manual_seed(seed),
|
| 53 |
+
subject_images=[],
|
| 54 |
+
spatial_images=spatial_imgs,
|
| 55 |
+
cond_size=512,
|
| 56 |
+
).images[0]
|
| 57 |
+
clear_cache(pipe.transformer)
|
| 58 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
# Define the Gradio interface components
|
| 61 |
control_types = ["Ghibli"]
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
# Create the Gradio Blocks interface
|
| 64 |
with gr.Blocks() as demo:
|
| 65 |
gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl")
|
| 66 |
+
|
| 67 |
+
# Only show token field if API token is required
|
| 68 |
+
if API_TOKEN:
|
| 69 |
+
gr.Markdown("β οΈ **AUTHENTICATION REQUIRED**: Please enter your API token to use this service.")
|
| 70 |
+
api_token = gr.Textbox(label="API Token", type="password", value="")
|
| 71 |
+
else:
|
| 72 |
+
api_token = gr.Textbox(visible=False, value="") # Hidden field with empty value
|
| 73 |
+
|
| 74 |
gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.")
|
| 75 |
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.οΌDue to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.οΌ")
|
| 76 |
|
|
|
|
|
|
|
|
|
|
| 77 |
gr.Markdown("**[Attention!!]**οΌThe recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`")
|
| 78 |
gr.Markdown("ππIf you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))")
|
| 79 |
|
|
|
|
| 90 |
with gr.Column():
|
| 91 |
single_output_image = gr.Image(label="Generated Image")
|
| 92 |
|
| 93 |
+
# Set up examples (with token automatically added if present)
|
| 94 |
+
example_inputs = [prompt, spatial_img, height, width, seed, control_type]
|
| 95 |
+
if API_TOKEN:
|
| 96 |
+
# Add token to examples for convenience
|
| 97 |
+
example_data = [
|
| 98 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli", API_TOKEN],
|
| 99 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli", API_TOKEN],
|
| 100 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli", API_TOKEN],
|
| 101 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli", API_TOKEN],
|
| 102 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli", API_TOKEN],
|
| 103 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli", API_TOKEN],
|
| 104 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli", API_TOKEN],
|
| 105 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli", API_TOKEN],
|
| 106 |
+
]
|
| 107 |
+
example_inputs.append(api_token)
|
| 108 |
+
else:
|
| 109 |
+
# Use examples without token
|
| 110 |
+
example_data = [
|
| 111 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli"],
|
| 112 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli"],
|
| 113 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli"],
|
| 114 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli"],
|
| 115 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli"],
|
| 116 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli"],
|
| 117 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli"],
|
| 118 |
+
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli"],
|
| 119 |
+
]
|
| 120 |
+
|
| 121 |
gr.Examples(
|
| 122 |
+
examples=example_data,
|
| 123 |
+
inputs=example_inputs,
|
| 124 |
outputs=single_output_image,
|
| 125 |
fn=single_condition_generate_image,
|
| 126 |
cache_examples=False,
|
| 127 |
label="Single Condition Examples"
|
| 128 |
)
|
| 129 |
|
| 130 |
+
# Link the buttons to the functions with API token included
|
| 131 |
+
inputs = [prompt, spatial_img, height, width, seed, control_type]
|
| 132 |
+
if API_TOKEN:
|
| 133 |
+
inputs.append(api_token)
|
| 134 |
+
|
| 135 |
single_generate_btn.click(
|
| 136 |
single_condition_generate_image,
|
| 137 |
+
inputs=inputs,
|
| 138 |
outputs=single_output_image
|
| 139 |
)
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
# Launch the Gradio app
|
| 142 |
+
demo.queue().launch()
|