|
import json |
|
import os |
|
import shutil |
|
import sys |
|
from collections import defaultdict |
|
from statistics import mean |
|
|
|
import pandas as pd |
|
import requests |
|
|
|
from constants import BASE_WHISPERKIT_BENCHMARK_URL |
|
from text_normalizer import text_normalizer |
|
from utils import compute_average_wer, download_dataset |
|
|
|
|
|
def fetch_evaluation_data(url): |
|
""" |
|
Fetches evaluation data from the given URL. |
|
:param url: The URL to fetch the evaluation data from. |
|
:returns: The evaluation data as a dictionary. |
|
:rauses: sys.exit if the request fails |
|
""" |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
return json.loads(response.text) |
|
else: |
|
sys.exit(f"Failed to fetch WhisperKit evals: {response.text}") |
|
|
|
|
|
def process_benchmark_file(file_path, dataset_dfs, device_map, results): |
|
""" |
|
Processes a single benchmark file and updates the results dictionary. |
|
:param file_path: Path to the benchmark JSON file. |
|
:param dataset_dfs: Dictionary of DataFrames containing dataset information. |
|
:param results: Dictionary to store the processed results. |
|
This function reads a benchmark JSON file, extracts relevant information, |
|
and updates the results dictionary with various metrics including WER, |
|
speed, tokens per second, and quality of inference (QoI). |
|
""" |
|
with open(file_path, "r") as file: |
|
test_results = json.load(file) |
|
|
|
if len(test_results) == 0: |
|
return |
|
|
|
commit_hash_timestamp = file_path.split("/")[-2] |
|
commit_timestamp, commit_hash = commit_hash_timestamp.split("_") |
|
|
|
first_test_result = test_results[0] |
|
if first_test_result is None: |
|
return |
|
|
|
filename = file_path.split("/")[-1].strip(".json") |
|
device, company, model, dataset_dir, timestamp = filename.split("_") |
|
model = f"{company}_{model}" |
|
|
|
if device not in device_map: |
|
return |
|
|
|
device = device_map[device] |
|
os_info = first_test_result["staticAttributes"]["os"] |
|
|
|
key = (model, device, os_info, commit_timestamp) |
|
dataset_name = dataset_dir |
|
for test_result in test_results: |
|
if test_result is None: |
|
continue |
|
|
|
test_info = test_result["testInfo"] |
|
audio_file_name = test_info["audioFile"] |
|
|
|
dataset_df = dataset_dfs[dataset_name] |
|
|
|
wer_entry = { |
|
"prediction": text_normalizer(test_info["prediction"]), |
|
"reference": text_normalizer(test_info["reference"]), |
|
} |
|
results[key]["timestamp"] = timestamp |
|
results[key]["average_wer"].append(wer_entry) |
|
|
|
input_audio_seconds = test_info["timings"]["inputAudioSeconds"] |
|
full_pipeline = test_info["timings"]["fullPipeline"] / 1000 |
|
time_elapsed = test_result["latencyStats"]["measurements"]["timeElapsed"] |
|
total_decoding_loops = test_info["timings"]["totalDecodingLoops"] |
|
|
|
results[key]["dataset_speed"][dataset_name][ |
|
"inputAudioSeconds" |
|
] += input_audio_seconds |
|
results[key]["dataset_speed"][dataset_name]["fullPipeline"] += full_pipeline |
|
|
|
results[key]["speed"]["inputAudioSeconds"] += input_audio_seconds |
|
results[key]["speed"]["fullPipeline"] += full_pipeline |
|
|
|
results[key]["commit_hash"] = commit_hash |
|
results[key]["commit_timestamp"] = commit_timestamp |
|
|
|
results[key]["dataset_tokens_per_second"][dataset_name][ |
|
"totalDecodingLoops" |
|
] += total_decoding_loops |
|
results[key]["dataset_tokens_per_second"][dataset_name][ |
|
"timeElapsed" |
|
] += time_elapsed |
|
results[key]["tokens_per_second"]["totalDecodingLoops"] += total_decoding_loops |
|
results[key]["tokens_per_second"]["timeElapsed"] += time_elapsed |
|
|
|
audio = audio_file_name.split(".")[0] |
|
audio = audio.split("-")[0] |
|
|
|
dataset_row = dataset_df.loc[dataset_df["file"].str.contains(audio)].iloc[0] |
|
reference_wer = dataset_row["wer"] |
|
prediction_wer = test_info["wer"] |
|
|
|
results[key]["qoi"].append(1 if prediction_wer <= reference_wer * 110 else 0) |
|
|
|
|
|
def calculate_and_save_performance_results( |
|
performance_results, performance_output_path |
|
): |
|
""" |
|
Calculates final performance metrics and saves them to a JSON file. |
|
:param performance_results: Dictionary containing raw performance data. |
|
:param performance_output_path: Path to save the processed performance results. |
|
This function processes the raw performance data, calculates average metrics, |
|
and writes the final results to a JSON file, with each entry representing |
|
a unique combination of model, device, and OS. |
|
""" |
|
not_supported = [] |
|
with open(performance_output_path, "w") as performance_file: |
|
for key, data in performance_results.items(): |
|
model, device, os_info, timestamp = key |
|
speed = round( |
|
data["speed"]["inputAudioSeconds"] / data["speed"]["fullPipeline"], 2 |
|
) |
|
|
|
|
|
|
|
|
|
|
|
performance_entry = { |
|
"model": model.replace("_", "/"), |
|
"device": device, |
|
"os": os_info.replace("_", " "), |
|
"timestamp": data["timestamp"], |
|
"speed": speed, |
|
"tokens_per_second": round( |
|
data["tokens_per_second"]["totalDecodingLoops"] |
|
/ data["tokens_per_second"]["timeElapsed"], |
|
2, |
|
), |
|
"dataset_speed": { |
|
dataset: round( |
|
speed_info["inputAudioSeconds"] / speed_info["fullPipeline"], 2 |
|
) |
|
for dataset, speed_info in data["dataset_speed"].items() |
|
}, |
|
"dataset_tokens_per_second": { |
|
dataset: round( |
|
tps_info["totalDecodingLoops"] / tps_info["timeElapsed"], 2 |
|
) |
|
for dataset, tps_info in data["dataset_tokens_per_second"].items() |
|
}, |
|
"average_wer": compute_average_wer(data["average_wer"]), |
|
"qoi": round(mean(data["qoi"]), 2), |
|
"commit_hash": data["commit_hash"], |
|
"commit_timestamp": data["commit_timestamp"], |
|
} |
|
|
|
json.dump(performance_entry, performance_file) |
|
performance_file.write("\n") |
|
|
|
return not_supported |
|
|
|
|
|
def generate_support_matrix(performance_data_path="dashboard_data/performance_data.json", output_file="dashboard_data/support_data.csv"): |
|
""" |
|
Generate a support matrix CSV showing model compatibility across devices and OS versions. |
|
✅: All tests passed |
|
⚠️: Some tests failed |
|
""" |
|
support_matrix = defaultdict(lambda: defaultdict(lambda: { |
|
"os_versions": set(), |
|
"dataset_count": 0 |
|
})) |
|
|
|
models = set() |
|
devices = set() |
|
|
|
|
|
with open(performance_data_path, 'r') as f: |
|
for line in f: |
|
entry = json.loads(line) |
|
model = entry["model"] |
|
device = entry["device"] |
|
os_info = entry["os"] |
|
|
|
models.add(model) |
|
devices.add(device) |
|
|
|
support_matrix[model][device]["os_versions"].add(os_info) |
|
if "dataset_speed" in entry: |
|
support_matrix[model][device]["dataset_count"] = len(entry["dataset_speed"]) |
|
|
|
|
|
df = pd.DataFrame(columns=['', 'Model'] + [f'"{device}"' for device in sorted(devices)]) |
|
|
|
|
|
for model in sorted(models): |
|
row_data = {'': model, 'Model': model} |
|
|
|
for device in sorted(devices): |
|
info = support_matrix[model].get(device, {"dataset_count": 0, "os_versions": set()}) |
|
os_versions = ', '.join(sorted(info["os_versions"])) |
|
|
|
if info["dataset_count"] == 0: |
|
row_data[f'"{device}"'] = "Not Supported" |
|
elif info["dataset_count"] >= 2: |
|
row_data[f'"{device}"'] = f"✅ {os_versions}" |
|
else: |
|
row_data[f'"{device}"'] = f"⚠️ {os_versions}" |
|
|
|
df = pd.concat([df, pd.DataFrame([row_data])], ignore_index=True) |
|
|
|
|
|
df.to_csv(output_file, index=False) |
|
|
|
|
|
def main(): |
|
""" |
|
Main function to orchestrate the performance data generation process. |
|
This function performs the following steps: |
|
1. Downloads benchmark data if requested. |
|
2. Fetches evaluation data for various datasets. |
|
3. Processes benchmark files and summary files. |
|
4. Calculates and saves performance and support results. |
|
""" |
|
source_xcresult_repo = "argmaxinc/whisperkit-evals-dataset" |
|
source_xcresult_subfolder = "benchmark_data/" |
|
source_xcresult_directory = f"{source_xcresult_repo}/{source_xcresult_subfolder}" |
|
if len(sys.argv) > 1 and sys.argv[1] == "download": |
|
try: |
|
shutil.rmtree(source_xcresult_repo) |
|
except: |
|
print("Nothing to remove.") |
|
download_dataset( |
|
source_xcresult_repo, source_xcresult_repo, source_xcresult_subfolder |
|
) |
|
|
|
datasets = { |
|
"Earnings-22": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json", |
|
"LibriSpeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true", |
|
"earnings22-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json", |
|
"librispeech-10mins": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true", |
|
"earnings22-12hours": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/earnings22/2024-03-04_13%3A39%3A42_GMT-0800.json", |
|
"librispeech": "https://huggingface.co/datasets/argmaxinc/whisperkit-evals/resolve/main/WhisperOpenAIAPI/openai_whisper-large-v2/librispeech/2024-02-28_18%3A45%3A02_GMT-0800.json?download=true", |
|
} |
|
|
|
dataset_dfs = {} |
|
for dataset_name, url in datasets.items(): |
|
evals = fetch_evaluation_data(url) |
|
dataset_dfs[dataset_name] = pd.json_normalize(evals["results"]) |
|
|
|
performance_results = defaultdict( |
|
lambda: { |
|
"average_wer": [], |
|
"qoi": [], |
|
"speed": {"inputAudioSeconds": 0, "fullPipeline": 0}, |
|
"tokens_per_second": {"totalDecodingLoops": 0, "timeElapsed": 0}, |
|
"dataset_speed": defaultdict( |
|
lambda: {"inputAudioSeconds": 0, "fullPipeline": 0} |
|
), |
|
"dataset_tokens_per_second": defaultdict( |
|
lambda: {"totalDecodingLoops": 0, "timeElapsed": 0} |
|
), |
|
"timestamp": None, |
|
"commit_hash": None, |
|
"commit_timestamp": None, |
|
"test_timestamp": None, |
|
} |
|
) |
|
|
|
with open("dashboard_data/device_map.json", "r") as f: |
|
device_map = json.load(f) |
|
|
|
for subdir, _, files in os.walk(source_xcresult_directory): |
|
for filename in files: |
|
file_path = os.path.join(subdir, filename) |
|
if not filename.endswith(".json"): |
|
continue |
|
else: |
|
process_benchmark_file(file_path, dataset_dfs, device_map, performance_results) |
|
|
|
calculate_and_save_performance_results( |
|
performance_results, "dashboard_data/performance_data.json" |
|
) |
|
|
|
generate_support_matrix() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|