Ben Burtenshaw commited on
Commit
d9e9462
1 Parent(s): 3c9d064

transfer pipeline

Browse files
Files changed (3) hide show
  1. app.py +0 -8
  2. hub.py +0 -18
  3. pipeline.py +0 -183
app.py CHANGED
@@ -4,7 +4,6 @@ from hub import (
4
  setup_dataset_on_hub,
5
  duplicate_space_on_hub,
6
  add_project_config_to_space_repo,
7
- push_pipeline_to_hub,
8
  )
9
 
10
  import streamlit as st
@@ -108,13 +107,6 @@ if st.button("🤗 Setup Project Resources"):
108
  argilla_space_repo_id=f"{hub_username}/{argilla_name}",
109
  project_space_repo_id=f"{hub_username}/{space_name}",
110
  )
111
-
112
- push_pipeline_to_hub(
113
- pipeline_path="pipeline.py",
114
- hub_username=hub_username,
115
- hub_token=hub_token,
116
- project_name=project_name,
117
- )
118
 
119
  st.subheader("👢 Next Steps")
120
 
 
4
  setup_dataset_on_hub,
5
  duplicate_space_on_hub,
6
  add_project_config_to_space_repo,
 
7
  )
8
 
9
  import streamlit as st
 
107
  argilla_space_repo_id=f"{hub_username}/{argilla_name}",
108
  project_space_repo_id=f"{hub_username}/{space_name}",
109
  )
 
 
 
 
 
 
 
110
 
111
  st.subheader("👢 Next Steps")
112
 
hub.py CHANGED
@@ -74,21 +74,3 @@ def pull_seed_data_from_repo(repo_id, hub_token):
74
  return json.load(open(tempfile_path))
75
 
76
 
77
- def push_pipeline_to_hub(
78
- pipeline_path,
79
- hub_username,
80
- hub_token: str,
81
- project_name,
82
- ):
83
- repo_id = f"{hub_username}/{project_name}"
84
-
85
- # upload the pipeline to the hub
86
- hf_api.upload_file(
87
- path_or_fileobj=pipeline_path,
88
- path_in_repo="pipeline.py",
89
- token=hub_token,
90
- repo_id=repo_id,
91
- repo_type="dataset",
92
- )
93
-
94
- print(f"pipeline.py uploaded to {repo_id}")
 
74
  return json.load(open(tempfile_path))
75
 
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pipeline.py DELETED
@@ -1,183 +0,0 @@
1
- import json
2
- from textwrap import dedent
3
- from typing import Any, Dict, List
4
-
5
- from distilabel.llms.huggingface import InferenceEndpointsLLM
6
- from distilabel.pipeline import Pipeline
7
- from distilabel.steps import TextGenerationToArgilla
8
- from distilabel.steps.expand import ExpandColumns
9
- from distilabel.steps.generators.data import LoadDataFromDicts
10
- from distilabel.steps.tasks.self_instruct import SelfInstruct
11
- from distilabel.steps.tasks.text_generation import TextGeneration
12
- from distilabel.steps.tasks.typing import ChatType
13
-
14
-
15
- ################################################################################
16
- # Functions to create task prompts
17
- ################################################################################
18
-
19
-
20
- def create_application_instruction(domain: str, examples: List[Dict[str, str]]):
21
- """Create the instruction for Self-Instruct task."""
22
- system_prompt = dedent(
23
- f"""You are an AI assistant than generates queries around the domain of {domain}.
24
- Your should not expect basic but profound questions from your users.
25
- The queries should reflect a diversxamity of vision and economic positions and political positions.
26
- The queries may know about different methods of {domain}.
27
- The queries can be positioned politically, economically, socially, or practically.
28
- Also take into account the impact of diverse causes on diverse domains."""
29
- )
30
- for example in examples:
31
- question = example["question"]
32
- answer = example["answer"]
33
- system_prompt += f"""\n- Question: {question}\n- Answer: {answer}\n"""
34
-
35
-
36
- def create_seed_terms(topics: List[str], perspectives: List[str]) -> List[str]:
37
- """Create seed terms for self intruct to start from."""
38
-
39
- return [
40
- f"{topic} from a {perspective} perspective"
41
- for topic in topics
42
- for perspective in perspectives
43
- ]
44
-
45
-
46
- ################################################################################
47
- # Define out custom step for the domain expert
48
- ################################################################################
49
-
50
-
51
- class DomainExpert(TextGeneration):
52
- """A customized task to generate text as a domain expert in the domain of farming and agriculture."""
53
-
54
- system_prompt: str
55
- template: str = """This is the the instruction: {instruction}"""
56
-
57
- def format_input(self, input: Dict[str, Any]) -> "ChatType":
58
- return [
59
- {
60
- "role": "system",
61
- "content": self.system_prompt,
62
- },
63
- {
64
- "role": "user",
65
- "content": self.template.format(**input),
66
- },
67
- ]
68
-
69
-
70
- ################################################################################
71
- # Main script to run the pipeline
72
- ################################################################################
73
-
74
-
75
- if __name__ == "__main__":
76
- import argparse
77
- import json
78
-
79
- parser = argparse.ArgumentParser(
80
- description="Run the pipeline to generate domain-specific datasets."
81
- )
82
- parser.add_argument("--hub-token", type=str, help="The Hugging Face API token.")
83
- parser.add_argument("--argilla-api-key", type=str, help="The Argilla API key.")
84
- parser.add_argument("--argilla-api-url", type=str, help="The Argilla API URL.")
85
- parser.add_argument(
86
- "--argilla-dataset-name", type=str, help="The name of the dataset in Argilla."
87
- )
88
- parser.add_argument(
89
- "--seed_data_path",
90
- type=str,
91
- help="The path to the seed data.",
92
- default="seed_data.json",
93
- )
94
- parser.add_argument(
95
- "--endpoint-base-url", type=str, help="The base URL of the inference endpoint."
96
- )
97
-
98
- args = parser.parse_args()
99
-
100
- # collect our seed data
101
-
102
- with open(args.seed_data_path, "r") as f:
103
- seed_data = json.load(f)
104
-
105
- topics = seed_data.get("topics", [])
106
- perspectives = seed_data.get("perspectives", [])
107
- domain_expert_prompt = seed_data.get("domain_expert_prompt", "")
108
- examples = seed_data.get("examples", [])
109
- domain_name = seed_data.get("domain_name", "domain")
110
-
111
- # Define the task prompts
112
-
113
- terms = create_seed_terms(topics=topics, perspectives=perspectives)
114
- application_instruction = create_application_instruction(
115
- domain=domain_name, examples=examples
116
- )
117
-
118
- # Define the distilabel pipeline
119
-
120
- with Pipeline(domain_name) as pipeline:
121
- load_data = LoadDataFromDicts(
122
- name="load_data",
123
- data=[{"input": term} for term in terms],
124
- batch_size=64,
125
- )
126
-
127
- self_instruct = SelfInstruct(
128
- name="self_instruct",
129
- num_instructions=5,
130
- input_batch_size=8,
131
- llm=InferenceEndpointsLLM(
132
- base_url=args.endpoint_base_url,
133
- api_key=args.hub_token,
134
- ),
135
- )
136
-
137
- expand_instructions = ExpandColumns(
138
- name="expand_columns", columns={"instructions": "instruction"}
139
- )
140
-
141
- domain_expert = DomainExpert(
142
- name="domain_expert",
143
- llm=InferenceEndpointsLLM(
144
- base_url=args.endpoint_base_url,
145
- api_key=args.hub_token,
146
- ),
147
- input_batch_size=8,
148
- system_prompt=domain_expert_prompt,
149
- )
150
-
151
- to_argilla = TextGenerationToArgilla(
152
- name="text_generation_to_argilla",
153
- dataset_name=args.argilla_dataset_name,
154
- dataset_workspace="admin",
155
- api_url=args.argilla_api_url,
156
- api_key=args.argilla_api_key,
157
- )
158
-
159
- # Connect up the pipeline
160
-
161
- load_data.connect(self_instruct)
162
- self_instruct.connect(expand_instructions)
163
- expand_instructions.connect(domain_expert)
164
- domain_expert.connect(to_argilla)
165
-
166
- # Run the pipeline
167
-
168
- pipeline.run(
169
- parameters={
170
- "self_instruct": {
171
- "llm": {"api_key": args.hub_token, "base_url": args.endpoint_base_url}
172
- },
173
- "domain_expert": {
174
- "llm": {"api_key": args.hub_token, "base_url": args.endpoint_base_url}
175
- },
176
- "text_generation_to_argilla": {
177
- "dataset_name": args.argilla_dataset_name,
178
- "api_key": args.argilla_api_key,
179
- "api_url": args.argilla_api_url,
180
- },
181
- },
182
- use_cache=False,
183
- )