Spaces:
Sleeping
Sleeping
File size: 3,499 Bytes
8675ade |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "f5a0d75d",
"metadata": {},
"outputs": [],
"source": [
"import chromadb\n",
"from llama_index.core import StorageContext\n",
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"# from llama_index.embeddings.fastembed import FastEmbedEmbedding\n",
"from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
"from llama_index.core import SimpleDirectoryReader, StorageContext, VectorStoreIndex\n",
"\n",
"# embed_model = FastEmbedEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")\n",
"data_dir = r\"knowledge_base\\raw\\classification\"\n",
"\n",
"documents = SimpleDirectoryReader(str(data_dir)).load_data()\n",
"data_path = r\"knowledge_base\\vector\\classification\"\n",
"db = chromadb.PersistentClient(path=data_path)"
]
},
{
"cell_type": "markdown",
"id": "b52b6ba8",
"metadata": {},
"source": [
"### Storing the data locally"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "348df588",
"metadata": {},
"outputs": [],
"source": [
"chroma_collection = db.get_or_create_collection(\"classification_db\")\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
"storage_context = StorageContext.from_defaults(vector_store=vector_store)\n",
"index = VectorStoreIndex.from_documents(\n",
" documents=documents,\n",
" storage_context=storage_context,\n",
" show_progress=True,\n",
" # embed_model=embed_model\n",
")"
]
},
{
"cell_type": "markdown",
"id": "f7411c03",
"metadata": {},
"source": [
"### Loading the locally stored vector index"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4d9cbd1b",
"metadata": {},
"outputs": [],
"source": [
"import chromadb\n",
"from llama_index.core import StorageContext\n",
"from llama_index.core import VectorStoreIndex\n",
"from llama_index.core.retrievers import VectorIndexRetriever\n",
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"# from llama_index.embeddings.fastembed import FastEmbedEmbedding\n",
"\n",
"# embed_model = FastEmbedEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")\n",
"\n",
"data_path = r\"knowledge_base\\vector\\classification\"\n",
"db = chromadb.PersistentClient(path=data_path)\n",
"chroma_collection = db.get_or_create_collection(\"classification_db\")\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
"storage_context = StorageContext.from_defaults(vector_store=vector_store)\n",
"\n",
"index = VectorStoreIndex.from_vector_store(vector_store, storage_context=storage_context)\n",
"retriever = VectorIndexRetriever(\n",
" index, \n",
" # embed_model=embed_model\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "05804310",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "dev",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|