File size: 14,570 Bytes
a1514be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"import pickle, os, numpy as np\n",
"from tqdm import tqdm\n",
"from langchain.schema import Document\n",
"from langchain.vectorstores import FAISS\n",
"from langchain.schema import Document\n",
"from langchain_community.embeddings import HuggingFaceBgeEmbeddings\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain_community.retrievers import BM25Retriever\n",
"from langchain.retrievers import EnsembleRetriever"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"λ°μ΄ν° λ‘λ μ€...\n",
"μ΄ 2736κ°μ λ°°μΉκ° λ‘λλμμ΅λλ€.\n"
]
}
],
"source": [
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
"\n",
"# cases.pkl νμΌμμ λ°μ΄ν° λ‘λ\n",
"print(\"λ°μ΄ν° λ‘λ μ€...\")\n",
"with open(\"/Users/anpigon/Documents/Embed/αα
₯αΈαα
―α«αα
‘α«α
α
¨/Result2.pkl\", \"rb\") as file:\n",
" data = pickle.load(file)\n",
"\n",
"print(f\"μ΄ {len(data)}κ°μ λ°°μΉκ° λ‘λλμμ΅λλ€.\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# μλ² λ© λͺ¨λΈ μ€μ (μ€μ λ‘ μλ² λ©νμ§λ μμ)\n",
"embeddings = HuggingFaceBgeEmbeddings(model_name=\"BAAI/bge-m3\")"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"# ν
μ€νΈ λΆν κΈ° μ€μ \n",
"text_splitter = RecursiveCharacterTextSplitter(\n",
" chunk_size=2000,\n",
" chunk_overlap=200,\n",
" length_function=len,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"λ¬Έμ μ²λ¦¬ λ° μ²νΉ μ€...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 2736/2736 [00:42<00:00, 64.15it/s] \n"
]
}
],
"source": [
"# λ¬Έμ μ²λ¦¬ λ° μ²νΉ\n",
"print(\"λ¬Έμ μ²λ¦¬ λ° μ²νΉ μ€...\")\n",
"documents = []\n",
"text_embedding_pairs = []\n",
"\n",
"for batch in tqdm(data):\n",
" original_sentences = batch[1] # λ°°μΉλΉ 32κ°μ μλ³Έ λ¬Έμ₯\n",
" embedding_vectors = batch[0] # λ°°μΉλΉ 32κ°μ μλ² λ© λ²‘ν°\n",
"\n",
" for sentence, vector in zip(original_sentences, embedding_vectors):\n",
" chunks = text_splitter.split_text(sentence)\n",
" for chunk in chunks:\n",
" doc = Document(page_content=chunk)\n",
" documents.append(doc)\n",
" text_embedding_pairs.append((chunk, vector))"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"FAISS μΈλ±μ€ λΆλ¬μ€κΈ°\n",
"FAISS μΈλ±μ€ λΆλ¬μ€κΈ° μλ£\n"
]
}
],
"source": [
"# FAISS μΈλ±μ€ μμ±\n",
"print(\"FAISS μΈλ±μ€ λΆλ¬μ€κΈ°\")\n",
"FAISS_DB_INDEX = \"./index_faiss\"\n",
"faiss_db = FAISS.load_local(\n",
" FAISS_DB_INDEX, embeddings, allow_dangerous_deserialization=True\n",
")\n",
"faiss_retriever = faiss_db.as_retriever(search_type=\"mmr\", search_kwargs={\"k\": 10})\n",
"print(\"FAISS μΈλ±μ€ λΆλ¬μ€κΈ° μλ£\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"BM25Retriever λΆλ¬μ€κΈ°\n",
"BM25 리νΈλ¦¬λ² λΆλ¬μ€κΈ° μλ£\n"
]
}
],
"source": [
"from kiwipiepy import Kiwi\n",
"from typing import List\n",
"\n",
"kiwi = Kiwi()\n",
"\n",
"\n",
"def kiwi_tokenize(text):\n",
" return [token.form for token in kiwi.tokenize(text)]\n",
"\n",
"\n",
"print(\"BM25Retriever λΆλ¬μ€κΈ°\")\n",
"# bm25_retriever = BM25Retriever.from_documents(documents, k=10)\n",
"with open(\"./index_bm25/kiwi.pkl\", \"rb\") as f:\n",
" bm25_retriever = pickle.load(f)\n",
"print(\"BM25 리νΈλ¦¬λ² λΆλ¬μ€κΈ° μλ£\")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"ensemble_retriever = EnsembleRetriever(\n",
" retrievers=[bm25_retriever, faiss_retriever], weights=[0.7, 0.3], search_type=\"mmr\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"from operator import itemgetter\n",
"from langchain.callbacks.base import BaseCallbackHandler\n",
"from langchain_core.prompts import (\n",
" HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n",
")\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain_anthropic import ChatAnthropic\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_community.chat_message_histories import ChatMessageHistory\n",
"from langchain.schema import HumanMessage, AIMessage, SystemMessage\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"\n",
"\n",
"class StreamCallback(BaseCallbackHandler):\n",
" def on_llm_new_token(self, token: str, **kwargs):\n",
" print(token, end=\"\", flush=True)\n",
"\n",
"\n",
"# ν둬ννΈ ν
νλ¦Ώ μ€μ \n",
"prompt_template = \"\"\"\n",
"λΉμ μ νμ¬μ΄μ 20λ
μ°¨ λ²λ₯ μ λ¬Έκ°μ
λλ€. μ£Όμ΄μ§ μ§λ¬Έμ λν΄ λ¬Έμμ μ 보λ₯Ό μ΅λν νμ©νμ¬ λ΅λ³νμΈμ.\n",
"μ§λ¬Έμλ μκΈ° μν©μ μ€λͺ
ν κ²μ΄λ©°, μ§λ¬Έμμ μν©κ³Ό λΉμ·ν νλ‘λ₯Ό μ€λͺ
ν΄μ€μΌ νλ©°, κ°μ₯ μ΅κ·Ό μ¬κ±΄ μμΌλ‘ μκ°λλλ€.\n",
"μ΅λν μμΈνκ² λ΅λ³ν©λλ€. μ΄λ±νμμ΄ μ΄ν΄ν μ λλ‘ μ΄ν΄νκΈ° μ½λλ‘ λ΅λ³νκ³ , νκΈλ‘ μμ±νμΈμ.\n",
"μ§λ¬Έμ λν λ΅λ³ μ¬, [μ¬κ±΄λͺ
1]..., [μ¬κ±΄λͺ
2]... μμλ‘ μ€λͺ
ν΄μΌ ν©λλ€.\n",
"λ¬Έμμμ λ΅λ³μ μ°Ύμ μ μλ κ²½μ°, \"λ¬Έμμ λ΅λ³μ΄ μμ΅λλ€.\"λΌκ³ λ΅λ³νμΈμ.\n",
"λ΅λ³μ μΆμ²(source)λ₯Ό λ°λμ νκΈ°ν΄μ£ΌμΈμ. μΆμ²λ λ©νλ°μ΄ν°μ νλ‘μΌλ ¨λ²νΈ, μ¬κ±΄λͺ
, μ¬κ±΄λ²νΈ μμΌλ‘ νκΈ° ν©λλ€.\n",
"\n",
"# μ£Όμ΄μ§ λ¬Έμ:\n",
"{context}\n",
"\n",
"# μ§λ¬Έ: {question}\n",
"\n",
"# λ΅λ³:\n",
"\n",
"# μΆμ²:\n",
"- source1\n",
"- source2\n",
"- ...\n",
"\"\"\"\n",
"\n",
"# LLM λ° μΆλ ₯ νμ μ€μ \n",
"llm = ChatOpenAI(\n",
" model=\"gpt-4o\",\n",
" temperature=0,\n",
" streaming=True,\n",
" verbose=True,\n",
" callbacks=[StreamCallback()],\n",
")\n",
"# llm = ChatAnthropic(model=\"claude-3-5-sonnet-20240620\", temperature=0, streaming=True, callbacks=[StreamCallback()])\n",
"\n",
"output_parser = StrOutputParser()\n",
"\n",
"# μ±ν
κΈ°λ‘μ μ μ₯ν λ©λͺ¨λ¦¬ μ΄κΈ°ν\n",
"chat_history = ChatMessageHistory()\n",
"\n",
"# ν둬ννΈ μ€μ \n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"system\", prompt_template),\n",
" MessagesPlaceholder(variable_name=\"history\"),\n",
" (\"human\", \"{question}\"),\n",
" ]\n",
").partial(history=chat_history.messages)\n",
"\n",
"# Runnable κ°μ²΄ μμ±\n",
"runnable = RunnablePassthrough.assign(\n",
" context=itemgetter(\"question\") | ensemble_retriever,\n",
")\n",
"# LCEL μ²΄μΈ κ΅¬μ±\n",
"chain = runnable | prompt | llm | output_parser\n",
"\n",
"\n",
"def rag_chain(question):\n",
" response = chain.invoke({\"question\": question})\n",
" chat_history.add_user_message(question)\n",
" chat_history.add_ai_message(response)\n",
" return response"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"μλ
νμΈμ. νμ¬λμ
λλ€. μ§λ¬Ένμ μν©κ³Ό λΉμ·ν νλ‘λ₯Ό μ°Ύμ보μμ΅λλ€. μλμ λ κ°μ§ μ¬λ‘λ₯Ό μκ°ν΄λλ¦¬κ² μ΅λλ€.\n",
"\n",
"### [μ¬κ±΄λͺ
1] λΆκ³΅μ ν λ²λ₯ νμμ κ΄ν λ²λ¦¬λ₯Ό μ€ν΄ν μλ²μ΄ μλ μ€λ‘\n",
"- **μΆμ²**: 214987, μν΄λ°°μλ±, 68λ€88, 1968.07.30\n",
"- **μ¬κ±΄ λ΄μ©**: λ§€λμΈμ΄ λΆλμ°μ λ§€λν λΉμ, λ§€μμΈμ΄ λ§€λμΈμ κΆλ°ν μ¬μ μ μκ³ μμκ³ , λ§€λμΈμ΄ νκΈ°λ₯Ό κΊΌλ €νλ λΆλΆκΉμ§ λ§€μμΈμ μꡬμ μν΄ ν¨κ» νμ§ μμ μ μμμ΅λλ€. λ§€λ§€λͺ©μ λ¬Όμ κ²½κ³νμ μΈ‘λλ λ§€μμΈμ΄ μΌλ°©μ μΌλ‘ νκ³ , λΆλμ° κ°κ²©λ λ§€μ° μ λ ΄νκ² μ±
μ λμμ΅λλ€. μ΄ μ¬κ±΄μμ λ²μμ μ΄λ¬ν λ§€λ§€νμκ° λΆκ³΅μ ν λ²λ₯ νμμ ν΄λΉνλ€κ³ νλ¨νμμ΅λλ€.\n",
"\n",
"### [μ¬κ±΄λͺ
2] μκ³ μ μ£Όμ₯μ΄ μ°©μ€λ‘ μΈν μμ¬νμμ μ·¨μλ‘λ 보μ¬μ§λ―λ‘, μ΄λ₯Ό μλͺ
μΉ μμ μλ²μ΄ μλ μ\n",
"- **μΆμ²**: 153300, λ§€λ§€λκΈλ°νλ±, 66λ€1289, 1966.09.20\n",
"- **μ¬κ±΄ λ΄μ©**: μκ³ κ° νΌκ³ λ‘λΆν° λ§€μν λ
Ό 1,389ν μ€ μΌλΆλ νμ²μΌλ‘ λμ΄ μμ΄ κ²½μν μ μλ λ
μ΄μκ³ , λλ¨Έμ§ λ
μ μ΄λ―Έ λ€λ₯Έ μ¬λλ€μ΄ κ²½μνκ³ μμμ΅λλ€. μκ³ λ μ΄λ¬ν μ¬μ€μ μμ§ λͺ»ν μ± λ§€λ§€κ³μ½μ 체결νμκ³ , λμ€μ μ΄λ₯Ό μκ² λμ΄ κ³μ½μ 무ν¨λ‘ μ£Όμ₯νμμ΅λλ€. λ²μμ μκ³ μ μ£Όμ₯μ΄ μ°©μ€λ‘ μΈν μμ¬νμμ μ·¨μλ‘λ λ³Ό μ μλ€κ³ νλ¨νμμ΅λλ€.\n",
"\n",
"μ΄ λ μ¬κ±΄ λͺ¨λ λ§€μμΈμ΄ λ§€λ§€ λμ λΆλμ°μ μ€μ μνλ₯Ό μ λλ‘ μμ§ λͺ»ν μ± κ³μ½μ 체결ν ν, κ·Έ μ¬μ€μ μκ² λμ΄ λ²μ λΆμμ΄ λ°μν μ¬λ‘μ
λλ€. μ§λ¬Έμλμ μν©κ³Ό μ μ¬ν μ μ΄ λ§μΌλ―λ‘ μ°Έκ³ νμκΈ° λ°λλλ€.\n",
"\n",
"### μμ½\n",
"- **μ¬κ±΄λͺ
1**: λ§€λμΈμ κΆλ°ν μ¬μ μ μ΄μ©νμ¬ λΆλμ°μ μ λ ΄νκ² λ§€μν κ²½μ°.\n",
"- **μ¬κ±΄λͺ
2**: λ§€μν λΆλμ°μ΄ μ€μ λ‘λ κ²½μν μ μλ λ
μ΄μμμ λμ€μ μκ² λ κ²½μ°.\n",
"\n",
"μ΄μ κ°μ μ¬λ‘λ₯Ό ν΅ν΄ λ²μ λμ λ°©μμ λͺ¨μν΄λ³΄μκΈ° λ°λλλ€. μΆκ°μ μΈ λ²μ μ‘°μΈμ΄ νμνμλ©΄ λ³νΈμ¬μ μλ΄νμκΈ°λ₯Ό κΆμ₯λ립λλ€.\n",
"\n",
"κ°μ¬ν©λλ€.\n",
"\n",
"### μΆμ²\n",
"- 214987, μν΄λ°°μλ±, 68λ€88, 1968.07.30\n",
"- 153300, λ§€λ§€λκΈλ°νλ±, 66λ€1289, 1966.09.20"
]
},
{
"data": {
"text/plain": [
"'μλ
νμΈμ. νμ¬λμ
λλ€. μ§λ¬Ένμ μν©κ³Ό λΉμ·ν νλ‘λ₯Ό μ°Ύμ보μμ΅λλ€. μλμ λ κ°μ§ μ¬λ‘λ₯Ό μκ°ν΄λλ¦¬κ² μ΅λλ€.\\n\\n### [μ¬κ±΄λͺ
1] λΆκ³΅μ ν λ²λ₯ νμμ κ΄ν λ²λ¦¬λ₯Ό μ€ν΄ν μλ²μ΄ μλ μ€λ‘\\n- **μΆμ²**: 214987, μν΄λ°°μλ±, 68λ€88, 1968.07.30\\n- **μ¬κ±΄ λ΄μ©**: λ§€λμΈμ΄ λΆλμ°μ λ§€λν λΉμ, λ§€μμΈμ΄ λ§€λμΈμ κΆλ°ν μ¬μ μ μκ³ μμκ³ , λ§€λμΈμ΄ νκΈ°λ₯Ό κΊΌλ €νλ λΆλΆκΉμ§ λ§€μμΈμ μꡬμ μν΄ ν¨κ» νμ§ μμ μ μμμ΅λλ€. λ§€λ§€λͺ©μ λ¬Όμ κ²½κ³νμ μΈ‘λλ λ§€μμΈμ΄ μΌλ°©μ μΌλ‘ νκ³ , λΆλμ° κ°κ²©λ λ§€μ° μ λ ΄νκ² μ±
μ λμμ΅λλ€. μ΄ μ¬κ±΄μμ λ²μμ μ΄λ¬ν λ§€λ§€νμκ° λΆκ³΅μ ν λ²λ₯ νμμ ν΄λΉνλ€κ³ νλ¨νμμ΅λλ€.\\n\\n### [μ¬κ±΄λͺ
2] μκ³ μ μ£Όμ₯μ΄ μ°©μ€λ‘ μΈν μμ¬νμμ μ·¨μλ‘λ 보μ¬μ§λ―λ‘, μ΄λ₯Ό μλͺ
μΉ μμ μλ²μ΄ μλ μ\\n- **μΆμ²**: 153300, λ§€λ§€λκΈλ°νλ±, 66λ€1289, 1966.09.20\\n- **μ¬κ±΄ λ΄μ©**: μκ³ κ° νΌκ³ λ‘λΆν° λ§€μν λ
Ό 1,389ν μ€ μΌλΆλ νμ²μΌλ‘ λμ΄ μμ΄ κ²½μν μ μλ λ
μ΄μκ³ , λλ¨Έμ§ λ
μ μ΄λ―Έ λ€λ₯Έ μ¬λλ€μ΄ κ²½μνκ³ μμμ΅λλ€. μκ³ λ μ΄λ¬ν μ¬μ€μ μμ§ λͺ»ν μ± λ§€λ§€κ³μ½μ 체결νμκ³ , λμ€μ μ΄λ₯Ό μκ² λμ΄ κ³μ½μ 무ν¨λ‘ μ£Όμ₯νμμ΅λλ€. λ²μμ μκ³ μ μ£Όμ₯μ΄ μ°©μ€λ‘ μΈν μμ¬νμμ μ·¨μλ‘λ λ³Ό μ μλ€κ³ νλ¨νμμ΅λλ€.\\n\\nμ΄ λ μ¬κ±΄ λͺ¨λ λ§€μμΈμ΄ λ§€λ§€ λμ λΆλμ°μ μ€μ μνλ₯Ό μ λλ‘ μμ§ λͺ»ν μ± κ³μ½μ 체결ν ν, κ·Έ μ¬μ€μ μκ² λμ΄ λ²μ λΆμμ΄ λ°μν μ¬λ‘μ
λλ€. μ§λ¬Έμλμ μν©κ³Ό μ μ¬ν μ μ΄ λ§μΌλ―λ‘ μ°Έκ³ νμκΈ° λ°λλλ€.\\n\\n### μμ½\\n- **μ¬κ±΄λͺ
1**: λ§€λμΈμ κΆλ°ν μ¬μ μ μ΄μ©νμ¬ λΆλμ°μ μ λ ΄νκ² λ§€μν κ²½μ°.\\n- **μ¬κ±΄λͺ
2**: λ§€μν λΆλμ°μ΄ μ€μ λ‘λ κ²½μν μ μλ λ
μ΄μμμ λμ€μ μκ² λ κ²½μ°.\\n\\nμ΄μ κ°μ μ¬λ‘λ₯Ό ν΅ν΄ λ²μ λμ λ°©μμ λͺ¨μν΄λ³΄μκΈ° λ°λλλ€. μΆκ°μ μΈ λ²μ μ‘°μΈμ΄ νμνμλ©΄ λ³νΈμ¬μ μλ΄νμκΈ°λ₯Ό κΆμ₯λ립λλ€.\\n\\nκ°μ¬ν©λλ€.\\n\\n### μΆμ²\\n- 214987, μν΄λ°°μλ±, 68λ€88, 1968.07.30\\n- 153300, λ§€λ§€λκΈλ°νλ±, 66λ€1289, 1966.09.20'"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rag_chain(\n",
" \"λ
Όλ°μ μ½ 2μ²νμ μλλ°, μκ³ λ³΄λ μ§μ μ§μ μ μλ λ
μ΄μΌ. μ΄λ° μ¬κΈ°μ λΉμ·ν κ±Έ μλ €μ€!\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|