anonymous8
		
	commited on
		
		
					Commit 
							
							·
						
						ecdc8b8
	
1
								Parent(s):
							
							4943752
								
update
Browse files- app.py +354 -134
- checkpoints.zip +2 -2
- text_defense/202.IMDB10K/imdb10k.test.dat +0 -0
- text_defense/202.IMDB10K/imdb10k.train.dat +0 -0
- text_defense/202.IMDB10K/imdb10k.valid.dat +0 -0
    	
        app.py
    CHANGED
    
    | @@ -10,14 +10,23 @@ from findfile import find_files | |
| 10 |  | 
| 11 | 
             
            from anonymous_demo import TADCheckpointManager
         | 
| 12 | 
             
            from textattack import Attacker
         | 
| 13 | 
            -
            from textattack.attack_recipes import  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 14 | 
             
            from textattack.attack_results import SuccessfulAttackResult
         | 
| 15 | 
             
            from textattack.datasets import Dataset
         | 
| 16 | 
             
            from textattack.models.wrappers import HuggingFaceModelWrapper
         | 
| 17 |  | 
| 18 | 
            -
            z = zipfile.ZipFile( | 
| 19 | 
             
            z.extractall(os.getcwd())
         | 
| 20 |  | 
|  | |
| 21 | 
             
            class ModelWrapper(HuggingFaceModelWrapper):
         | 
| 22 | 
             
                def __init__(self, model):
         | 
| 23 | 
             
                    self.model = model  # pipeline = pipeline
         | 
| @@ -26,12 +35,11 @@ class ModelWrapper(HuggingFaceModelWrapper): | |
| 26 | 
             
                    outputs = []
         | 
| 27 | 
             
                    for text_input in text_inputs:
         | 
| 28 | 
             
                        raw_outputs = self.model.infer(text_input, print_result=False, **kwargs)
         | 
| 29 | 
            -
                        outputs.append(raw_outputs[ | 
| 30 | 
             
                    return outputs
         | 
| 31 |  | 
| 32 |  | 
| 33 | 
             
            class SentAttacker:
         | 
| 34 | 
            -
             | 
| 35 | 
             
                def __init__(self, model, recipe_class=BAEGarg2019):
         | 
| 36 | 
             
                    model = model
         | 
| 37 | 
             
                    model_wrapper = ModelWrapper(model)
         | 
| @@ -41,7 +49,7 @@ class SentAttacker: | |
| 41 |  | 
| 42 | 
             
                    # recipe.transformation.language = "en"
         | 
| 43 |  | 
| 44 | 
            -
                    _dataset = [( | 
| 45 | 
             
                    _dataset = Dataset(_dataset)
         | 
| 46 |  | 
| 47 | 
             
                    self.attacker = Attacker(recipe, _dataset)
         | 
| @@ -58,63 +66,132 @@ def diff_texts(text1, text2): | |
| 58 | 
             
            def get_ensembled_tad_results(results):
         | 
| 59 | 
             
                target_dict = {}
         | 
| 60 | 
             
                for r in results:
         | 
| 61 | 
            -
                    target_dict[r[ | 
|  | |
|  | |
| 62 |  | 
| 63 | 
            -
                return dict(zip(target_dict.values(), target_dict.keys()))[ | 
|  | |
|  | |
| 64 |  | 
| 65 |  | 
| 66 | 
            -
            nltk.download( | 
| 67 |  | 
| 68 | 
             
            sent_attackers = {}
         | 
| 69 | 
             
            tad_classifiers = {}
         | 
| 70 |  | 
| 71 | 
             
            attack_recipes = {
         | 
| 72 | 
            -
                 | 
| 73 | 
            -
                 | 
| 74 | 
            -
                 | 
| 75 | 
            -
                 | 
| 76 | 
            -
                 | 
| 77 | 
            -
                 | 
| 78 | 
            -
                 | 
| 79 | 
             
            }
         | 
| 80 |  | 
| 81 | 
            -
            for attacker in [
         | 
| 82 | 
            -
                'pwws',
         | 
| 83 | 
            -
                'bae',
         | 
| 84 | 
            -
                'textfooler'
         | 
| 85 | 
            -
            ]:
         | 
| 86 | 
             
                for dataset in [
         | 
| 87 | 
            -
                     | 
| 88 | 
            -
                     | 
| 89 | 
            -
                     | 
|  | |
| 90 | 
             
                ]:
         | 
| 91 | 
            -
                    if  | 
| 92 | 
            -
                        tad_classifiers[ | 
|  | |
|  | |
|  | |
|  | |
| 93 |  | 
| 94 | 
            -
                    sent_attackers[ | 
| 95 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 96 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 97 |  | 
| 98 | 
            -
            def get_a_sst2_example():
         | 
| 99 | 
            -
                filter_key_words = ['.py', '.md', 'readme', 'log', 'result', 'zip', '.state_dict', '.model', '.png', 'acc_', 'f1_', '.origin', '.adv', '.csv']
         | 
| 100 |  | 
| 101 | 
            -
             | 
| 102 | 
            -
                 | 
| 103 | 
            -
             | 
| 104 | 
            -
             | 
| 105 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 106 |  | 
| 107 | 
            -
                 | 
| 108 | 
            -
             | 
| 109 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 110 | 
             
                    data = []
         | 
| 111 | 
             
                    label_set = set()
         | 
| 112 | 
             
                    for data_file in dataset_file[dat_type]:
         | 
| 113 | 
            -
             | 
| 114 | 
            -
                        with open(data_file, mode='r', encoding='utf8') as fin:
         | 
| 115 | 
             
                            lines = fin.readlines()
         | 
| 116 | 
             
                            for line in lines:
         | 
| 117 | 
            -
                                text, label = line.split( | 
| 118 | 
             
                                text = text.strip()
         | 
| 119 | 
             
                                label = int(label.strip())
         | 
| 120 | 
             
                                data.append((text, label))
         | 
| @@ -122,25 +199,43 @@ def get_a_sst2_example(): | |
| 122 | 
             
                    return data[random.randint(0, len(data))]
         | 
| 123 |  | 
| 124 |  | 
| 125 | 
            -
            def  | 
| 126 | 
            -
                filter_key_words = [ | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 127 |  | 
| 128 | 
            -
                dataset_file = { | 
| 129 | 
            -
                dataset =  | 
| 130 | 
            -
                search_path =  | 
| 131 | 
            -
                task =  | 
| 132 | 
            -
                dataset_file[ | 
| 133 | 
            -
             | 
| 134 | 
            -
                     | 
| 135 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 136 | 
             
                    data = []
         | 
| 137 | 
             
                    label_set = set()
         | 
| 138 | 
             
                    for data_file in dataset_file[dat_type]:
         | 
| 139 | 
            -
             | 
| 140 | 
            -
                        with open(data_file, mode='r', encoding='utf8') as fin:
         | 
| 141 | 
             
                            lines = fin.readlines()
         | 
| 142 | 
             
                            for line in lines:
         | 
| 143 | 
            -
                                text, label = line.split( | 
| 144 | 
             
                                text = text.strip()
         | 
| 145 | 
             
                                label = int(label.strip())
         | 
| 146 | 
             
                                data.append((text, label))
         | 
| @@ -148,26 +243,43 @@ def get_a_agnews_example(): | |
| 148 | 
             
                    return data[random.randint(0, len(data))]
         | 
| 149 |  | 
| 150 |  | 
| 151 | 
            -
            def  | 
| 152 | 
            -
                filter_key_words = [ | 
| 153 | 
            -
             | 
| 154 | 
            -
             | 
| 155 | 
            -
             | 
| 156 | 
            -
             | 
| 157 | 
            -
             | 
| 158 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 159 |  | 
| 160 | 
            -
                 | 
| 161 | 
            -
             | 
| 162 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 163 | 
             
                    data = []
         | 
| 164 | 
             
                    label_set = set()
         | 
| 165 | 
             
                    for data_file in dataset_file[dat_type]:
         | 
| 166 | 
            -
             | 
| 167 | 
            -
                        with open(data_file, mode='r', encoding='utf8') as fin:
         | 
| 168 | 
             
                            lines = fin.readlines()
         | 
| 169 | 
             
                            for line in lines:
         | 
| 170 | 
            -
                                text, label = line.split( | 
| 171 | 
             
                                text = text.strip()
         | 
| 172 | 
             
                                label = int(label.strip())
         | 
| 173 | 
             
                                data.append((text, label))
         | 
| @@ -175,97 +287,205 @@ def get_a_amazon_example(): | |
| 175 | 
             
                    return data[random.randint(0, len(data))]
         | 
| 176 |  | 
| 177 |  | 
|  | |
|  | |
|  | |
| 178 | 
             
            def generate_adversarial_example(dataset, attacker, text=None, label=None):
         | 
| 179 | 
            -
                if not text:
         | 
| 180 | 
            -
                    if  | 
| 181 | 
            -
                        text, label =  | 
| 182 | 
            -
                    elif  | 
| 183 | 
            -
                        text, label =  | 
| 184 | 
            -
                    elif  | 
| 185 | 
            -
                        text, label =  | 
|  | |
|  | |
|  | |
|  | |
| 186 |  | 
| 187 | 
             
                result = None
         | 
| 188 | 
            -
                attack_result = sent_attackers[ | 
|  | |
|  | |
| 189 | 
             
                if isinstance(attack_result, SuccessfulAttackResult):
         | 
| 190 | 
            -
             | 
| 191 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 192 | 
             
                        # with defense
         | 
| 193 | 
            -
                        result = tad_classifiers[ | 
| 194 | 
            -
                            attack_result.perturbed_result.attacked_text.text | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 195 | 
             
                            print_result=True,
         | 
| 196 | 
            -
                            defense= | 
| 197 | 
             
                        )
         | 
| 198 |  | 
| 199 | 
             
                if result:
         | 
| 200 | 
             
                    classification_df = {}
         | 
| 201 | 
            -
                    classification_df[ | 
| 202 | 
            -
                    classification_df[ | 
| 203 | 
            -
                    classification_df[ | 
| 204 | 
            -
                    classification_df[ | 
| 205 |  | 
| 206 | 
             
                    advdetection_df = {}
         | 
| 207 | 
            -
                    if result[ | 
| 208 | 
            -
                        advdetection_df[ | 
| 209 | 
            -
             | 
| 210 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 211 | 
             
                        # advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
         | 
| 212 | 
             
                        # advdetection_df['is_correct'] = result['ref_is_adv_check']
         | 
| 213 |  | 
| 214 | 
             
                else:
         | 
| 215 | 
             
                    return generate_adversarial_example(dataset, attacker)
         | 
| 216 |  | 
| 217 | 
            -
                return ( | 
| 218 | 
            -
             | 
| 219 | 
            -
             | 
| 220 | 
            -
             | 
| 221 | 
            -
             | 
| 222 | 
            -
             | 
| 223 | 
            -
             | 
| 224 | 
            -
             | 
| 225 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 226 |  | 
| 227 |  | 
| 228 | 
             
            demo = gr.Blocks()
         | 
| 229 | 
            -
             | 
| 230 | 
             
            with demo:
         | 
| 231 | 
            -
                 | 
| 232 | 
            -
                     | 
| 233 | 
            -
             | 
| 234 | 
            -
             | 
| 235 | 
            -
             | 
| 236 | 
            -
             | 
| 237 | 
            -
             | 
| 238 | 
            -
             | 
| 239 | 
            -
             | 
| 240 | 
            -
             | 
| 241 | 
            -
             | 
| 242 | 
            -
             | 
| 243 | 
            -
             | 
| 244 | 
            -
             | 
| 245 | 
            -
             | 
| 246 | 
            -
             | 
| 247 | 
            -
             | 
| 248 | 
            -
             | 
| 249 | 
            -
             | 
| 250 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 251 | 
             
                    with gr.Column():
         | 
| 252 | 
            -
                        gr. | 
| 253 | 
            -
             | 
| 254 | 
            -
             | 
| 255 | 
            -
             | 
| 256 | 
            -
             | 
| 257 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 258 |  | 
| 259 | 
             
                # Bind functions to buttons
         | 
| 260 | 
            -
                button_gen.click( | 
| 261 | 
            -
             | 
| 262 | 
            -
             | 
| 263 | 
            -
             | 
| 264 | 
            -
             | 
| 265 | 
            -
             | 
| 266 | 
            -
             | 
| 267 | 
            -
             | 
| 268 | 
            -
             | 
| 269 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 270 |  | 
| 271 | 
             
            demo.launch()
         | 
|  | |
| 10 |  | 
| 11 | 
             
            from anonymous_demo import TADCheckpointManager
         | 
| 12 | 
             
            from textattack import Attacker
         | 
| 13 | 
            +
            from textattack.attack_recipes import (
         | 
| 14 | 
            +
                BAEGarg2019,
         | 
| 15 | 
            +
                PWWSRen2019,
         | 
| 16 | 
            +
                TextFoolerJin2019,
         | 
| 17 | 
            +
                PSOZang2020,
         | 
| 18 | 
            +
                IGAWang2019,
         | 
| 19 | 
            +
                GeneticAlgorithmAlzantot2018,
         | 
| 20 | 
            +
                DeepWordBugGao2018,
         | 
| 21 | 
            +
            )
         | 
| 22 | 
             
            from textattack.attack_results import SuccessfulAttackResult
         | 
| 23 | 
             
            from textattack.datasets import Dataset
         | 
| 24 | 
             
            from textattack.models.wrappers import HuggingFaceModelWrapper
         | 
| 25 |  | 
| 26 | 
            +
            z = zipfile.ZipFile("checkpoints.zip", "r")
         | 
| 27 | 
             
            z.extractall(os.getcwd())
         | 
| 28 |  | 
| 29 | 
            +
             | 
| 30 | 
             
            class ModelWrapper(HuggingFaceModelWrapper):
         | 
| 31 | 
             
                def __init__(self, model):
         | 
| 32 | 
             
                    self.model = model  # pipeline = pipeline
         | 
|  | |
| 35 | 
             
                    outputs = []
         | 
| 36 | 
             
                    for text_input in text_inputs:
         | 
| 37 | 
             
                        raw_outputs = self.model.infer(text_input, print_result=False, **kwargs)
         | 
| 38 | 
            +
                        outputs.append(raw_outputs["probs"])
         | 
| 39 | 
             
                    return outputs
         | 
| 40 |  | 
| 41 |  | 
| 42 | 
             
            class SentAttacker:
         | 
|  | |
| 43 | 
             
                def __init__(self, model, recipe_class=BAEGarg2019):
         | 
| 44 | 
             
                    model = model
         | 
| 45 | 
             
                    model_wrapper = ModelWrapper(model)
         | 
|  | |
| 49 |  | 
| 50 | 
             
                    # recipe.transformation.language = "en"
         | 
| 51 |  | 
| 52 | 
            +
                    _dataset = [("", 0)]
         | 
| 53 | 
             
                    _dataset = Dataset(_dataset)
         | 
| 54 |  | 
| 55 | 
             
                    self.attacker = Attacker(recipe, _dataset)
         | 
|  | |
| 66 | 
             
            def get_ensembled_tad_results(results):
         | 
| 67 | 
             
                target_dict = {}
         | 
| 68 | 
             
                for r in results:
         | 
| 69 | 
            +
                    target_dict[r["label"]] = (
         | 
| 70 | 
            +
                        target_dict.get(r["label"]) + 1 if r["label"] in target_dict else 1
         | 
| 71 | 
            +
                    )
         | 
| 72 |  | 
| 73 | 
            +
                return dict(zip(target_dict.values(), target_dict.keys()))[
         | 
| 74 | 
            +
                    max(target_dict.values())
         | 
| 75 | 
            +
                ]
         | 
| 76 |  | 
| 77 |  | 
| 78 | 
            +
            nltk.download("omw-1.4")
         | 
| 79 |  | 
| 80 | 
             
            sent_attackers = {}
         | 
| 81 | 
             
            tad_classifiers = {}
         | 
| 82 |  | 
| 83 | 
             
            attack_recipes = {
         | 
| 84 | 
            +
                "bae": BAEGarg2019,
         | 
| 85 | 
            +
                "pwws": PWWSRen2019,
         | 
| 86 | 
            +
                "textfooler": TextFoolerJin2019,
         | 
| 87 | 
            +
                "pso": PSOZang2020,
         | 
| 88 | 
            +
                "iga": IGAWang2019,
         | 
| 89 | 
            +
                "GA": GeneticAlgorithmAlzantot2018,
         | 
| 90 | 
            +
                "wordbugger": DeepWordBugGao2018,
         | 
| 91 | 
             
            }
         | 
| 92 |  | 
| 93 | 
            +
            for attacker in ["pwws", "bae", "textfooler"]:
         | 
|  | |
|  | |
|  | |
|  | |
| 94 | 
             
                for dataset in [
         | 
| 95 | 
            +
                    "agnews10k",
         | 
| 96 | 
            +
                    "amazon",
         | 
| 97 | 
            +
                    "sst2",
         | 
| 98 | 
            +
                    # 'imdb'
         | 
| 99 | 
             
                ]:
         | 
| 100 | 
            +
                    if "tad-{}".format(dataset) not in tad_classifiers:
         | 
| 101 | 
            +
                        tad_classifiers[
         | 
| 102 | 
            +
                            "tad-{}".format(dataset)
         | 
| 103 | 
            +
                        ] = TADCheckpointManager.get_tad_text_classifier(
         | 
| 104 | 
            +
                            "tad-{}".format(dataset).upper()
         | 
| 105 | 
            +
                        )
         | 
| 106 |  | 
| 107 | 
            +
                    sent_attackers["tad-{}{}".format(dataset, attacker)] = SentAttacker(
         | 
| 108 | 
            +
                        tad_classifiers["tad-{}".format(dataset)], attack_recipes[attacker]
         | 
| 109 | 
            +
                    )
         | 
| 110 | 
            +
                    tad_classifiers["tad-{}".format(dataset)].sent_attacker = sent_attackers[
         | 
| 111 | 
            +
                        "tad-{}pwws".format(dataset)
         | 
| 112 | 
            +
                    ]
         | 
| 113 | 
            +
             | 
| 114 | 
            +
             | 
| 115 | 
            +
            def get_sst2_example():
         | 
| 116 | 
            +
                filter_key_words = [
         | 
| 117 | 
            +
                    ".py",
         | 
| 118 | 
            +
                    ".md",
         | 
| 119 | 
            +
                    "readme",
         | 
| 120 | 
            +
                    "log",
         | 
| 121 | 
            +
                    "result",
         | 
| 122 | 
            +
                    "zip",
         | 
| 123 | 
            +
                    ".state_dict",
         | 
| 124 | 
            +
                    ".model",
         | 
| 125 | 
            +
                    ".png",
         | 
| 126 | 
            +
                    "acc_",
         | 
| 127 | 
            +
                    "f1_",
         | 
| 128 | 
            +
                    ".origin",
         | 
| 129 | 
            +
                    ".adv",
         | 
| 130 | 
            +
                    ".csv",
         | 
| 131 | 
            +
                ]
         | 
| 132 |  | 
| 133 | 
            +
                dataset_file = {"train": [], "test": [], "valid": []}
         | 
| 134 | 
            +
                dataset = "sst2"
         | 
| 135 | 
            +
                search_path = "./"
         | 
| 136 | 
            +
                task = "text_defense"
         | 
| 137 | 
            +
                dataset_file["test"] += find_files(
         | 
| 138 | 
            +
                    search_path,
         | 
| 139 | 
            +
                    [dataset, "test", task],
         | 
| 140 | 
            +
                    exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
         | 
| 141 | 
            +
                    + filter_key_words,
         | 
| 142 | 
            +
                )
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                for dat_type in ["test"]:
         | 
| 145 | 
            +
                    data = []
         | 
| 146 | 
            +
                    label_set = set()
         | 
| 147 | 
            +
                    for data_file in dataset_file[dat_type]:
         | 
| 148 | 
            +
                        with open(data_file, mode="r", encoding="utf8") as fin:
         | 
| 149 | 
            +
                            lines = fin.readlines()
         | 
| 150 | 
            +
                            for line in lines:
         | 
| 151 | 
            +
                                text, label = line.split("$LABEL$")
         | 
| 152 | 
            +
                                text = text.strip()
         | 
| 153 | 
            +
                                label = int(label.strip())
         | 
| 154 | 
            +
                                data.append((text, label))
         | 
| 155 | 
            +
                                label_set.add(label)
         | 
| 156 | 
            +
                    return data[random.randint(0, len(data))]
         | 
| 157 |  | 
|  | |
|  | |
| 158 |  | 
| 159 | 
            +
            def get_agnews_example():
         | 
| 160 | 
            +
                filter_key_words = [
         | 
| 161 | 
            +
                    ".py",
         | 
| 162 | 
            +
                    ".md",
         | 
| 163 | 
            +
                    "readme",
         | 
| 164 | 
            +
                    "log",
         | 
| 165 | 
            +
                    "result",
         | 
| 166 | 
            +
                    "zip",
         | 
| 167 | 
            +
                    ".state_dict",
         | 
| 168 | 
            +
                    ".model",
         | 
| 169 | 
            +
                    ".png",
         | 
| 170 | 
            +
                    "acc_",
         | 
| 171 | 
            +
                    "f1_",
         | 
| 172 | 
            +
                    ".origin",
         | 
| 173 | 
            +
                    ".adv",
         | 
| 174 | 
            +
                    ".csv",
         | 
| 175 | 
            +
                ]
         | 
| 176 |  | 
| 177 | 
            +
                dataset_file = {"train": [], "test": [], "valid": []}
         | 
| 178 | 
            +
                dataset = "agnews"
         | 
| 179 | 
            +
                search_path = "./"
         | 
| 180 | 
            +
                task = "text_defense"
         | 
| 181 | 
            +
                dataset_file["test"] += find_files(
         | 
| 182 | 
            +
                    search_path,
         | 
| 183 | 
            +
                    [dataset, "test", task],
         | 
| 184 | 
            +
                    exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
         | 
| 185 | 
            +
                    + filter_key_words,
         | 
| 186 | 
            +
                )
         | 
| 187 | 
            +
                for dat_type in ["test"]:
         | 
| 188 | 
             
                    data = []
         | 
| 189 | 
             
                    label_set = set()
         | 
| 190 | 
             
                    for data_file in dataset_file[dat_type]:
         | 
| 191 | 
            +
                        with open(data_file, mode="r", encoding="utf8") as fin:
         | 
|  | |
| 192 | 
             
                            lines = fin.readlines()
         | 
| 193 | 
             
                            for line in lines:
         | 
| 194 | 
            +
                                text, label = line.split("$LABEL$")
         | 
| 195 | 
             
                                text = text.strip()
         | 
| 196 | 
             
                                label = int(label.strip())
         | 
| 197 | 
             
                                data.append((text, label))
         | 
|  | |
| 199 | 
             
                    return data[random.randint(0, len(data))]
         | 
| 200 |  | 
| 201 |  | 
| 202 | 
            +
            def get_amazon_example():
         | 
| 203 | 
            +
                filter_key_words = [
         | 
| 204 | 
            +
                    ".py",
         | 
| 205 | 
            +
                    ".md",
         | 
| 206 | 
            +
                    "readme",
         | 
| 207 | 
            +
                    "log",
         | 
| 208 | 
            +
                    "result",
         | 
| 209 | 
            +
                    "zip",
         | 
| 210 | 
            +
                    ".state_dict",
         | 
| 211 | 
            +
                    ".model",
         | 
| 212 | 
            +
                    ".png",
         | 
| 213 | 
            +
                    "acc_",
         | 
| 214 | 
            +
                    "f1_",
         | 
| 215 | 
            +
                    ".origin",
         | 
| 216 | 
            +
                    ".adv",
         | 
| 217 | 
            +
                    ".csv",
         | 
| 218 | 
            +
                ]
         | 
| 219 |  | 
| 220 | 
            +
                dataset_file = {"train": [], "test": [], "valid": []}
         | 
| 221 | 
            +
                dataset = "amazon"
         | 
| 222 | 
            +
                search_path = "./"
         | 
| 223 | 
            +
                task = "text_defense"
         | 
| 224 | 
            +
                dataset_file["test"] += find_files(
         | 
| 225 | 
            +
                    search_path,
         | 
| 226 | 
            +
                    [dataset, "test", task],
         | 
| 227 | 
            +
                    exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
         | 
| 228 | 
            +
                    + filter_key_words,
         | 
| 229 | 
            +
                )
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                for dat_type in ["test"]:
         | 
| 232 | 
             
                    data = []
         | 
| 233 | 
             
                    label_set = set()
         | 
| 234 | 
             
                    for data_file in dataset_file[dat_type]:
         | 
| 235 | 
            +
                        with open(data_file, mode="r", encoding="utf8") as fin:
         | 
|  | |
| 236 | 
             
                            lines = fin.readlines()
         | 
| 237 | 
             
                            for line in lines:
         | 
| 238 | 
            +
                                text, label = line.split("$LABEL$")
         | 
| 239 | 
             
                                text = text.strip()
         | 
| 240 | 
             
                                label = int(label.strip())
         | 
| 241 | 
             
                                data.append((text, label))
         | 
|  | |
| 243 | 
             
                    return data[random.randint(0, len(data))]
         | 
| 244 |  | 
| 245 |  | 
| 246 | 
            +
            def get_imdb_example():
         | 
| 247 | 
            +
                filter_key_words = [
         | 
| 248 | 
            +
                    ".py",
         | 
| 249 | 
            +
                    ".md",
         | 
| 250 | 
            +
                    "readme",
         | 
| 251 | 
            +
                    "log",
         | 
| 252 | 
            +
                    "result",
         | 
| 253 | 
            +
                    "zip",
         | 
| 254 | 
            +
                    ".state_dict",
         | 
| 255 | 
            +
                    ".model",
         | 
| 256 | 
            +
                    ".png",
         | 
| 257 | 
            +
                    "acc_",
         | 
| 258 | 
            +
                    "f1_",
         | 
| 259 | 
            +
                    ".origin",
         | 
| 260 | 
            +
                    ".adv",
         | 
| 261 | 
            +
                    ".csv",
         | 
| 262 | 
            +
                ]
         | 
| 263 |  | 
| 264 | 
            +
                dataset_file = {"train": [], "test": [], "valid": []}
         | 
| 265 | 
            +
                dataset = "imdb"
         | 
| 266 | 
            +
                search_path = "./"
         | 
| 267 | 
            +
                task = "text_defense"
         | 
| 268 | 
            +
                dataset_file["test"] += find_files(
         | 
| 269 | 
            +
                    search_path,
         | 
| 270 | 
            +
                    [dataset, "test", task],
         | 
| 271 | 
            +
                    exclude_key=[".adv", ".org", ".defense", ".inference", "train."]
         | 
| 272 | 
            +
                    + filter_key_words,
         | 
| 273 | 
            +
                )
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                for dat_type in ["test"]:
         | 
| 276 | 
             
                    data = []
         | 
| 277 | 
             
                    label_set = set()
         | 
| 278 | 
             
                    for data_file in dataset_file[dat_type]:
         | 
| 279 | 
            +
                        with open(data_file, mode="r", encoding="utf8") as fin:
         | 
|  | |
| 280 | 
             
                            lines = fin.readlines()
         | 
| 281 | 
             
                            for line in lines:
         | 
| 282 | 
            +
                                text, label = line.split("$LABEL$")
         | 
| 283 | 
             
                                text = text.strip()
         | 
| 284 | 
             
                                label = int(label.strip())
         | 
| 285 | 
             
                                data.append((text, label))
         | 
|  | |
| 287 | 
             
                    return data[random.randint(0, len(data))]
         | 
| 288 |  | 
| 289 |  | 
| 290 | 
            +
            cache = set()
         | 
| 291 | 
            +
             | 
| 292 | 
            +
             | 
| 293 | 
             
            def generate_adversarial_example(dataset, attacker, text=None, label=None):
         | 
| 294 | 
            +
                if not text or text in cache:
         | 
| 295 | 
            +
                    if "agnews" in dataset.lower():
         | 
| 296 | 
            +
                        text, label = get_agnews_example()
         | 
| 297 | 
            +
                    elif "sst2" in dataset.lower():
         | 
| 298 | 
            +
                        text, label = get_sst2_example()
         | 
| 299 | 
            +
                    elif "amazon" in dataset.lower():
         | 
| 300 | 
            +
                        text, label = get_amazon_example()
         | 
| 301 | 
            +
                    elif "imdb" in dataset.lower():
         | 
| 302 | 
            +
                        text, label = get_imdb_example()
         | 
| 303 | 
            +
             | 
| 304 | 
            +
                cache.add(text)
         | 
| 305 |  | 
| 306 | 
             
                result = None
         | 
| 307 | 
            +
                attack_result = sent_attackers[
         | 
| 308 | 
            +
                    "tad-{}{}".format(dataset.lower(), attacker.lower())
         | 
| 309 | 
            +
                ].attacker.simple_attack(text, int(label))
         | 
| 310 | 
             
                if isinstance(attack_result, SuccessfulAttackResult):
         | 
| 311 | 
            +
                    if (
         | 
| 312 | 
            +
                        attack_result.perturbed_result.output
         | 
| 313 | 
            +
                        != attack_result.original_result.ground_truth_output
         | 
| 314 | 
            +
                    ) and (
         | 
| 315 | 
            +
                        attack_result.original_result.output
         | 
| 316 | 
            +
                        == attack_result.original_result.ground_truth_output
         | 
| 317 | 
            +
                    ):
         | 
| 318 | 
             
                        # with defense
         | 
| 319 | 
            +
                        result = tad_classifiers["tad-{}".format(dataset.lower())].infer(
         | 
| 320 | 
            +
                            attack_result.perturbed_result.attacked_text.text
         | 
| 321 | 
            +
                            + "!ref!{},{},{}".format(
         | 
| 322 | 
            +
                                attack_result.original_result.ground_truth_output,
         | 
| 323 | 
            +
                                1,
         | 
| 324 | 
            +
                                attack_result.perturbed_result.output,
         | 
| 325 | 
            +
                            ),
         | 
| 326 | 
             
                            print_result=True,
         | 
| 327 | 
            +
                            defense="pwws",
         | 
| 328 | 
             
                        )
         | 
| 329 |  | 
| 330 | 
             
                if result:
         | 
| 331 | 
             
                    classification_df = {}
         | 
| 332 | 
            +
                    classification_df["is_repaired"] = result["is_fixed"]
         | 
| 333 | 
            +
                    classification_df["pred_label"] = result["label"]
         | 
| 334 | 
            +
                    classification_df["confidence"] = round(result["confidence"], 3)
         | 
| 335 | 
            +
                    classification_df["is_correct"] = result["ref_label_check"]
         | 
| 336 |  | 
| 337 | 
             
                    advdetection_df = {}
         | 
| 338 | 
            +
                    if result["is_adv_label"] != "0":
         | 
| 339 | 
            +
                        advdetection_df["is_adversarial"] = {
         | 
| 340 | 
            +
                            "0": False,
         | 
| 341 | 
            +
                            "1": True,
         | 
| 342 | 
            +
                            0: False,
         | 
| 343 | 
            +
                            1: True,
         | 
| 344 | 
            +
                        }[result["is_adv_label"]]
         | 
| 345 | 
            +
                        advdetection_df["perturbed_label"] = result["perturbed_label"]
         | 
| 346 | 
            +
                        advdetection_df["confidence"] = round(result["is_adv_confidence"], 3)
         | 
| 347 | 
             
                        # advdetection_df['ref_is_attack'] = result['ref_is_adv_label']
         | 
| 348 | 
             
                        # advdetection_df['is_correct'] = result['ref_is_adv_check']
         | 
| 349 |  | 
| 350 | 
             
                else:
         | 
| 351 | 
             
                    return generate_adversarial_example(dataset, attacker)
         | 
| 352 |  | 
| 353 | 
            +
                return (
         | 
| 354 | 
            +
                    text,
         | 
| 355 | 
            +
                    label,
         | 
| 356 | 
            +
                    result["restored_text"],
         | 
| 357 | 
            +
                    result["label"],
         | 
| 358 | 
            +
                    attack_result.perturbed_result.attacked_text.text,
         | 
| 359 | 
            +
                    diff_texts(text, text),
         | 
| 360 | 
            +
                    diff_texts(text, attack_result.perturbed_result.attacked_text.text),
         | 
| 361 | 
            +
                    diff_texts(text, result["restored_text"]),
         | 
| 362 | 
            +
                    attack_result.perturbed_result.output,
         | 
| 363 | 
            +
                    pd.DataFrame(classification_df, index=[0]),
         | 
| 364 | 
            +
                    pd.DataFrame(advdetection_df, index=[0]),
         | 
| 365 | 
            +
                )
         | 
| 366 |  | 
| 367 |  | 
| 368 | 
             
            demo = gr.Blocks()
         | 
|  | |
| 369 | 
             
            with demo:
         | 
| 370 | 
            +
                gr.Markdown(
         | 
| 371 | 
            +
                    "# <p align='center'>  Reactive Perturbation Defocusing for Textual Adversarial Defense </p> "
         | 
| 372 | 
            +
                )
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                gr.Markdown("## <p align='center'>Clarifications</p>")
         | 
| 375 | 
            +
                gr.Markdown(
         | 
| 376 | 
            +
                    "- This demo has no mechanism to ensure the adversarial example will be correctly repaired by RPD."
         | 
| 377 | 
            +
                    " The repair success rate is actually the performance reported in the paper (approximately up to 97%.)"
         | 
| 378 | 
            +
                )
         | 
| 379 | 
            +
                gr.Markdown(
         | 
| 380 | 
            +
                    "- The red (+) and green (-) colors in the character edition indicate the character is added "
         | 
| 381 | 
            +
                    "or deleted in the adversarial example compared to the original input natural example."
         | 
| 382 | 
            +
                )
         | 
| 383 | 
            +
                gr.Markdown(
         | 
| 384 | 
            +
                    "- The adversarial example and repaired adversarial example may be unnatural to read, "
         | 
| 385 | 
            +
                    "while it is because the attackers usually generate unnatural perturbations."
         | 
| 386 | 
            +
                    "RPD does not introduce additional unnatural perturbations."
         | 
| 387 | 
            +
                )
         | 
| 388 | 
            +
                gr.Markdown(
         | 
| 389 | 
            +
                    "- To our best knowledge, Reactive Perturbation Defocusing is a novel approach in adversarial defense "
         | 
| 390 | 
            +
                    ". RPD significantly (>10% defense accuracy improvement) outperforms the state-of-the-art methods."
         | 
| 391 | 
            +
                )
         | 
| 392 | 
            +
             | 
| 393 | 
            +
             | 
| 394 | 
            +
                gr.Markdown("## <p align='center'>Natural Example Input</p>")
         | 
| 395 | 
            +
                with gr.Group():
         | 
| 396 | 
            +
                    with gr.Row():
         | 
| 397 | 
            +
                        input_dataset = gr.Radio(
         | 
| 398 | 
            +
                            choices=["SST2", "AGNews10K", "Amazon"],
         | 
| 399 | 
            +
                            value="SST2",
         | 
| 400 | 
            +
                            label="Select a testing dataset and an adversarial attacker to generate an adversarial example.",
         | 
| 401 | 
            +
                        )
         | 
| 402 | 
            +
                        input_attacker = gr.Radio(
         | 
| 403 | 
            +
                            choices=["BAE", "PWWS", "TextFooler"],
         | 
| 404 | 
            +
                            value="TextFooler",
         | 
| 405 | 
            +
                            label="Choose an Adversarial Attacker for generating an adversarial example to attack the model.",
         | 
| 406 | 
            +
                        )
         | 
| 407 | 
            +
                    with gr.Group():
         | 
| 408 | 
            +
                        with gr.Row():
         | 
| 409 | 
            +
                            input_sentence = gr.Textbox(
         | 
| 410 | 
            +
                                placeholder="Input a natural example...",
         | 
| 411 | 
            +
                                label="Alternatively, input a natural example and its original label to generate an adversarial example.",
         | 
| 412 | 
            +
                            )
         | 
| 413 | 
            +
                            input_label = gr.Textbox(
         | 
| 414 | 
            +
                                placeholder="Original label...", label="Original Label"
         | 
| 415 | 
            +
                            )
         | 
| 416 | 
            +
             | 
| 417 | 
            +
             | 
| 418 | 
            +
                button_gen = gr.Button(
         | 
| 419 | 
            +
                    "Generate an adversarial example and repair using RPD (No GPU, Time:3-10 mins )",
         | 
| 420 | 
            +
                    variant="primary",
         | 
| 421 | 
            +
                )
         | 
| 422 | 
            +
             | 
| 423 | 
            +
                gr.Markdown(
         | 
| 424 | 
            +
                    "## <p align='center'>Generated Adversarial Example and Repaired Adversarial Example</p>"
         | 
| 425 | 
            +
                )
         | 
| 426 | 
            +
                with gr.Group():
         | 
| 427 | 
             
                    with gr.Column():
         | 
| 428 | 
            +
                        with gr.Row():
         | 
| 429 | 
            +
                            output_original_example = gr.Textbox(label="Original Example")
         | 
| 430 | 
            +
                            output_original_label = gr.Textbox(label="Original Label")
         | 
| 431 | 
            +
                        with gr.Row():
         | 
| 432 | 
            +
                            output_adv_example = gr.Textbox(label="Adversarial Example")
         | 
| 433 | 
            +
                            output_adv_label = gr.Textbox(label="Perturbed Label")
         | 
| 434 | 
            +
                        with gr.Row():
         | 
| 435 | 
            +
                            output_repaired_example = gr.Textbox(label="Repaired Adversarial Example by RPD")
         | 
| 436 | 
            +
                            output_repaired_label = gr.Textbox(label="Repaired Label")
         | 
| 437 | 
            +
             | 
| 438 | 
            +
             | 
| 439 | 
            +
                gr.Markdown("## <p align='center'>The Output of Reactive Perturbation Defocusing</p>")
         | 
| 440 | 
            +
                with gr.Group():
         | 
| 441 | 
            +
                    output_is_adv_df = gr.DataFrame(label="Adversarial Example Detection Result")
         | 
| 442 | 
            +
                    gr.Markdown(
         | 
| 443 | 
            +
                        "The is_adversarial field indicates an adversarial example is detected. "
         | 
| 444 | 
            +
                        "The perturbed_label is the predicted label of the adversarial example. "
         | 
| 445 | 
            +
                        "The confidence field represents the confidence of the predicted adversarial example detection. "
         | 
| 446 | 
            +
                    )
         | 
| 447 | 
            +
                    output_df = gr.DataFrame(
         | 
| 448 | 
            +
                        label="Repaired Standard Classification Result"
         | 
| 449 | 
            +
                    )
         | 
| 450 | 
            +
                    gr.Markdown(
         | 
| 451 | 
            +
                        "If is_repaired=true, it has been repaired by RPD. "
         | 
| 452 | 
            +
                        "The pred_label field indicates the standard classification result. "
         | 
| 453 | 
            +
                        "The confidence field represents the confidence of the predicted label. "
         | 
| 454 | 
            +
                        "The is_correct field indicates whether the predicted label is correct."
         | 
| 455 | 
            +
                    )
         | 
| 456 | 
            +
             | 
| 457 | 
            +
             | 
| 458 | 
            +
                gr.Markdown("## <p align='center'>Example Comparisons</p>")
         | 
| 459 | 
            +
                ori_text_diff = gr.HighlightedText(
         | 
| 460 | 
            +
                        label="The Original Natural Example",
         | 
| 461 | 
            +
                        combine_adjacent=True,
         | 
| 462 | 
            +
                    )
         | 
| 463 | 
            +
                adv_text_diff = gr.HighlightedText(
         | 
| 464 | 
            +
                        label="Character Editions of Adversarial Example Compared to the Natural Example",
         | 
| 465 | 
            +
                        combine_adjacent=True,
         | 
| 466 | 
            +
                    )
         | 
| 467 | 
            +
                restored_text_diff = gr.HighlightedText(
         | 
| 468 | 
            +
                        label="Character Editions of Repaired Adversarial Example Compared to the Natural Example",
         | 
| 469 | 
            +
                        combine_adjacent=True,
         | 
| 470 | 
            +
                    )
         | 
| 471 |  | 
| 472 | 
             
                # Bind functions to buttons
         | 
| 473 | 
            +
                button_gen.click(
         | 
| 474 | 
            +
                    fn=generate_adversarial_example,
         | 
| 475 | 
            +
                    inputs=[input_dataset, input_attacker, input_sentence, input_label],
         | 
| 476 | 
            +
                    outputs=[
         | 
| 477 | 
            +
                        output_original_example,
         | 
| 478 | 
            +
                        output_original_label,
         | 
| 479 | 
            +
                        output_repaired_example,
         | 
| 480 | 
            +
                        output_repaired_label,
         | 
| 481 | 
            +
                        output_adv_example,
         | 
| 482 | 
            +
                        ori_text_diff,
         | 
| 483 | 
            +
                        adv_text_diff,
         | 
| 484 | 
            +
                        restored_text_diff,
         | 
| 485 | 
            +
                        output_adv_label,
         | 
| 486 | 
            +
                        output_df,
         | 
| 487 | 
            +
                        output_is_adv_df,
         | 
| 488 | 
            +
                    ],
         | 
| 489 | 
            +
                )
         | 
| 490 |  | 
| 491 | 
             
            demo.launch()
         | 
    	
        checkpoints.zip
    CHANGED
    
    | @@ -1,3 +1,3 @@ | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            -
            oid sha256: | 
| 3 | 
            -
            size  | 
|  | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f77ae4a45785183900ee874cb318a16b0e2f173b31749a2555215aca93672f26
         | 
| 3 | 
            +
            size 2456834455
         | 
    	
        text_defense/202.IMDB10K/imdb10k.test.dat
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        text_defense/202.IMDB10K/imdb10k.train.dat
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        text_defense/202.IMDB10K/imdb10k.valid.dat
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  |