Spaces:
Running
Running
add json reponse
Browse files- .gradio/certificate.pem +31 -0
- app.py +48 -24
- requirements.txt +1 -0
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
app.py
CHANGED
@@ -3,10 +3,11 @@ from transformers import pipeline
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
from torchvision import transforms
|
|
|
6 |
|
7 |
# MODELES
|
8 |
INGREDIENT_MODEL_ID = "stchakman/Fridge_Items_Model"
|
9 |
-
RECIPE_MODEL_ID
|
10 |
|
11 |
# PIPELINES
|
12 |
ingredient_classifier = pipeline(
|
@@ -15,11 +16,10 @@ ingredient_classifier = pipeline(
|
|
15 |
device=0 if torch.cuda.is_available() else -1,
|
16 |
top_k=5
|
17 |
)
|
18 |
-
|
19 |
recipe_generator = pipeline(
|
20 |
"text2text-generation",
|
21 |
model=RECIPE_MODEL_ID,
|
22 |
-
device=0 if torch.cuda.is_available() else -1
|
23 |
)
|
24 |
|
25 |
# AUGMENTATION
|
@@ -29,37 +29,61 @@ augment = transforms.Compose([
|
|
29 |
transforms.ColorJitter(brightness=0.2, contrast=0.2),
|
30 |
])
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
#
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
results = ingredient_classifier(image_aug)
|
42 |
ingredients = [res["label"] for res in results]
|
43 |
ingredient_str = ", ".join(ingredients)
|
44 |
-
|
45 |
-
yield f"🥕 Ingrédients détectés : {ingredient_str}\n\n🍳 Génération de la recette..."
|
46 |
-
|
47 |
-
# Génération recette
|
48 |
prompt = f"Ingredients: {ingredient_str}. Recipe:"
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
# INTERFACE
|
55 |
interface = gr.Interface(
|
56 |
-
fn=
|
57 |
-
inputs=gr.Image(type="pil", label="📷 Image de vos
|
58 |
-
outputs=
|
59 |
-
title="
|
60 |
-
description="
|
61 |
allow_flagging="never"
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
-
interface.launch(share=True)
|
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
from torchvision import transforms
|
6 |
+
import re
|
7 |
|
8 |
# MODELES
|
9 |
INGREDIENT_MODEL_ID = "stchakman/Fridge_Items_Model"
|
10 |
+
RECIPE_MODEL_ID = "flax-community/t5-recipe-generation"
|
11 |
|
12 |
# PIPELINES
|
13 |
ingredient_classifier = pipeline(
|
|
|
16 |
device=0 if torch.cuda.is_available() else -1,
|
17 |
top_k=5
|
18 |
)
|
|
|
19 |
recipe_generator = pipeline(
|
20 |
"text2text-generation",
|
21 |
model=RECIPE_MODEL_ID,
|
22 |
+
device=0 if torch.cuda.is_available() else -1,
|
23 |
)
|
24 |
|
25 |
# AUGMENTATION
|
|
|
29 |
transforms.ColorJitter(brightness=0.2, contrast=0.2),
|
30 |
])
|
31 |
|
32 |
+
def parse_recipe_text(raw: str):
|
33 |
+
"""
|
34 |
+
Parse le texte brut retourne par le modele en JSON { ingredients: [...], steps: [...] }.
|
35 |
+
"""
|
36 |
+
raw = raw.replace("ingredients: ingredients:", "ingredients:")
|
37 |
+
# On cherche la section ingredients et directions
|
38 |
+
ing_match = re.search(r"ingredients:\s*(.*?)\s*directions:", raw, re.IGNORECASE | re.DOTALL)
|
39 |
+
dir_match = re.search(r"directions:\s*(.+)$", raw, re.IGNORECASE | re.DOTALL)
|
40 |
|
41 |
+
# ingredients
|
42 |
+
ingredients = []
|
43 |
+
if ing_match:
|
44 |
+
ing_str = ing_match.group(1).strip()
|
45 |
+
parts = re.findall(r"(\d+\s+[^\d,\.]+(?: [^\d,\.]+)*)", ing_str)
|
46 |
+
if parts:
|
47 |
+
ingredients = [p.strip() for p in parts]
|
48 |
+
else:
|
49 |
+
ingredients = [i.strip() for i in ing_str.split(",") if i.strip()]
|
50 |
+
|
51 |
+
# etapes
|
52 |
+
steps = []
|
53 |
+
if dir_match:
|
54 |
+
steps_str = dir_match.group(1).strip()
|
55 |
+
for s in re.split(r"\.\s*", steps_str):
|
56 |
+
s = s.strip()
|
57 |
+
if s:
|
58 |
+
steps.append(s.endswith(".") and s or s + ".")
|
59 |
|
60 |
+
return {"ingredients": ingredients, "steps": steps}
|
61 |
+
|
62 |
+
def generate_recipe_json(image: Image.Image):
|
63 |
+
# Aug
|
64 |
+
image_aug = augment(image)
|
65 |
results = ingredient_classifier(image_aug)
|
66 |
ingredients = [res["label"] for res in results]
|
67 |
ingredient_str = ", ".join(ingredients)
|
|
|
|
|
|
|
|
|
68 |
prompt = f"Ingredients: {ingredient_str}. Recipe:"
|
69 |
+
raw = recipe_generator(prompt, max_new_tokens=256, do_sample=True)[0]["generated_text"]
|
70 |
|
71 |
+
parsed = parse_recipe_text(raw)
|
72 |
+
return {
|
73 |
+
"detected_ingredients": ingredients,
|
74 |
+
"recipe_text": raw,
|
75 |
+
"ingredients_parsed": parsed["ingredients"],
|
76 |
+
"steps": parsed["steps"]
|
77 |
+
}
|
78 |
|
|
|
79 |
interface = gr.Interface(
|
80 |
+
fn=generate_recipe_json,
|
81 |
+
inputs=gr.Image(type="pil", label="📷 Image de vos ingredients"),
|
82 |
+
outputs="json",
|
83 |
+
title="🧑🍳 Generateur de Recettes (JSON) 🧑🍳",
|
84 |
+
description="Depose une image d'ingredients, recupere directement un JSON structure avec ingredients et etapes.",
|
85 |
allow_flagging="never"
|
86 |
)
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
+
interface.launch(share=True)
|
requirements.txt
CHANGED
@@ -3,3 +3,4 @@ transformers
|
|
3 |
torch
|
4 |
torchvision
|
5 |
pillow
|
|
|
|
3 |
torch
|
4 |
torchvision
|
5 |
pillow
|
6 |
+
re
|