
Lab Session 1: Maha Neta
Palacode Narayana Iyer Anantharaman

25th Oct 2024



What is System 2 Attention Prompting?

• Inspired by Cognitive Psychology: Modeled after System 2 thinking (slow, 
deliberate, logical reasoning) vs. System 1 (fast, intuitive, automatic thinking).

• Encourages Deeper Reasoning: Prompts the LLM to engage in step-by-step, 
reflective thought processes, leading to more accurate and logical responses.

• Moves Beyond Heuristics: Avoids quick, pattern-based answers by focusing on 
explicit problem-solving and careful evaluation.



Key Characteristics of System 2 Prompting

• Task Decomposition: Breaks complex problems into smaller, manageable steps.

• Iterative Reasoning: Revisits and refines intermediate conclusions before 
finalizing.

• Attention to Detail: Focuses on precision, encouraging the model to check for 
accuracy.

• Useful for Complex Tasks: Effective in scenarios requiring logical analysis, math, or 
structured reasoning.



Prompt engineering: Zero shot inference

• Prompt engineering: Providing a prompt that can get the best response

• Zero shot inference: Provide a well crafted prompt to the foundational LLM, use the response 
from the model as the output. No additional training of the model is required

Classify the following text:
Great to see a successful 

Chandrayan Mission!
Model

Classify the following text:
Great to see a successful 

Chandrayan Mission!
Sentiment: Positive



Prompt engineering: One shot inference

• Prompt engineering: Providing a prompt that can get the best response

• One shot inference: Provide a well crafted prompt to the foundational LLM along 
with one example, use the response from the model as the output. No 
additional training of the model is required

Classify the following text:
Great to see a successful 
Chandrayan Mission!
Sentiment: Positive
Classify the following text:
The movie is boring 
Sentiment:

Model

Classify the following text:
Great to see a successful 
Chandrayan Mission!
Sentiment: Positive
Classify the following text:
The movie is boring 
Sentiment: Negative



Prompt engineering: Few shot inference

• Prompt engineering: Providing a prompt that can get the best response

• Few shot inference: Provide a well crafted prompt to the foundational LLM along 
with a few examples, use the response from the model as the output. No 
additional training of the model is required

Classify the following text:
Great to see a successful 
Chandrayan Mission!
Sentiment: Positive
Classify the following text:
The movie is boring 
Sentiment: Negative
Classify the following text:
What an awesome match!
Sentiment:

Model

Classify the following text:
Great to see a successful 
Chandrayan Mission!
Sentiment: Positive
Classify the following text:
The movie is boring 
Sentiment: Negative
Classify the following text:
What an awesome match!
Sentiment:



Few shot learning
• The success of LLMs comes from their large size and ability to store “knowledge” 

within the model parameter, which is learned during model training. 

• However, there are more ways to pass knowledge to an LLM. 

• The two primary methods are:
• Parametric knowledge — the knowledge mentioned above is anything that has been learned by 

the model during training time and is stored within the model weights (or parameters).
• Source knowledge — any knowledge provided to the model at inference time via the input prompt.

• Langchain’s FewShotPromptTemplate caters to source knowledge input. The idea is to 
“train” the model on a few examples — we call this few-shot learning — and these 
examples are given to the model within the prompt



Example Prompt Structure

Ref: https://www.pinecone.io/learn/series/langchain/langchain-prompt-templates/ 



Advanced Prompt Engineering

• Chain of Thoughts

• Tree of Thoughts

• Graph of Thoughts

• ReAct Agents





Chain of Thoughts – see cot.py in my code



Limitations of CoT Reasoning

• Chain-of-thought reasoning is intended to 
combat reasoning errors. 

• Giving the LLM one or more examples (few-shot 
learning) and illustrating how to reason through 
examples, helps to solve a different problem in 
a more accurate way. 

• But it still suffers from hallucination, and 
hallucinated “facts” can propagate through the 
reasoning, causing the model to come to the 
wrong conclusion regardless.

• ReAct aims to solve this issue by allowing the 
LLM to take actions such as searching Wikipedia 
so that it can find facts and reason from those.



ReAct Approach: Key Idea



Approach

1. An environment that takes a text action (out of a set of potential actions which can change based 
on the environment’s internal state) and returns a text observation.

2. An output parser framework that stops the agent from generating text once it has written a valid 
action, executes that action in the environment, and returns the observation (appends it to the 
text generated so far and prompts the LLM with that).

3. Human-generated examples of intermixed thoughts, actions, and observations in the 
environment to use for few-shot learning.



Hackathon - Instructions
• We will build this project step by step

• For each sub system, we will walk through a sample code and let you code

• You can do this in a team of 4. 

• Please complete the dataset cleaning, database creation, basic LLM prompting to 
generate SQL today. Please create a demo video and place it in the shared folder.

• You can submit the remaining by next session.



Project: Maha Neta

Build a GenAI based product to 
analyze data from past general 
elections and Maharashtra assembly 
elections to help political strategists 
for the upcoming Maharashtra state 
elections.

We use the data from 2019, 2024 
general elections and 2019 
Maharashtra results for this project. 

Data source: ECI



Problem - Example

• Persona: You are the key strategist of party X, where X could be the ruling party. You want to list 
all the constituencies you won in 2019, order them in terms of votes you got (descending order), 
put them in to 3 categories: Large wins, medium wins and low margin wins.

• You want to analyze those constituencies that are low margin wins more in depth by looking at 
assembly level granules, gender ratio and/or any other variable and identify them.

• Analyze all lost constituencies, determine if any of them are winnable this time. List them.

• Use visualizations (such as bar graphs, etc) to perform your analysis



General Architecture (Non Agentic, Chain)

LLM
SQL 

Execution 
Runtime

Output 
Processor 

LLM
Visualizer

Orchestrator

NL Query Structured 
Query

Results
Text Answer, 
Code for 
Visualization

Final 
Output

Can we use ReAct prompting here?



Steps

• Data downloading (Uploaded in shared drive)

• Data Preparation

• Write the framework code

• Develop Prompts

• Evaluate



Data Preparation
• The files are in .xls format, open them in MS Excel, save them as .xlsx. This will enable us to avoid 

installing xlrd package and we can directly use pandas to read this file.

• For the excel no 34, remove unwanted rows, ensure that the excel is a plain table. 

• Rename the column names as: state_name, constituency_number, constituency_name, 
assembly_constituency_number, assembly_ constituency_name, total_voters, 
total_votes_in_state, nota_votes, candidate_name, party_name, secured_votes

• The purpose of renaming are 2 fold: (a) It is easy to write SQL with this schema (b) LLM can interpret these names 
easier and can produce the SQL

• You will find that some fields are empty in the votes_secured. Fill them with 0.

• Save this file as .csv



Write Code: DB creation

• Write a function to save the csv data as a sqlite3 db. Name the db as “elections” 
and table name as “elections_2019”



Write Code: LLM Client

• Run the LLM server using LMStudio as discussed during the earlier hands on

• Develop the client code get_completion(prompt) that takes a prompt as input 
and returns the output returned by the server.

• Test the code by sending some test prompts and checking the results.



Build a Chatbot using streamlit
• Streamlit is a library to create UI on browser using Python. 

• Using streamlit components, it is easy to implement a chatbot in a few lines of code

• Integrate the LLM with streamlit front end using get_completion() function.

• Streamlit has necessary functions for charting and visualization so that one can build LLM driven 
dashboards quickly

• Review the front end code: my_chatbot.py, you can add necessary code for rich visualization like bar 
charts etc.

Ref: https://github.com/streamlit/llm-examples/blob/main/Chatbot.py 
Ref: https://docs.streamlit.io/develop/tutorials/llms/build-conversational-apps 

https://github.com/streamlit/llm-examples/blob/main/Chatbot.py
https://docs.streamlit.io/develop/tutorials/llms/build-conversational-apps


Write Code: Build DB execution runtime

• Write a module that takes the query as input, execute the query on the given 
database. You can chose SQL or MongoDB.

• Make sure that the LLM generated code doesn’t cause any harmful side effects, 
such as deleting or corrupting any database record 



Write Code: Prompting for SQL

• Review the questions and pick those that can be answered from the database

• Write prompts that take NL Query and Return SQL from the LLM

• Input should be through Chat GUI and SQL should be displayed in the GUI



OPTIONAL: Use ReAct framework

• ReAct is about using external tool to perform actions

• Can you build a tool that can automatically execute SQL code, get the results, run 
it again through LLM?



Write Code: Develop the orchestrator

• Now that all modules are coded and tested separately, build the 
orchestrator that runs the workflow through all these modules.



Generate NL questions

• Using an LLM, auto generate about 25 questions

• These will be used as test cases.

• These questions should be turned in to suitable prompts using the 
prompt templates



Integrate and Test

• Complete the end to end workflow: starting from questions, generating prompts 
to the LLM, getting SQL code, running it, getting results from database, post 
processing and visualizing the results

• You are required to develop and modify your prompts such that you get accurate 
SQL code out of the LLM

• Evaluate against 25 test cases and report the results.

• Upload your work in the shared folder


	Lab Session 1: Maha Neta
	What is System 2 Attention Prompting?
	Key Characteristics of System 2 Prompting
	Prompt engineering: Zero shot inference
	Prompt engineering: One shot inference
	Prompt engineering: Few shot inference
	Few shot learning
	Example Prompt Structure
	Advanced Prompt Engineering
	Slide Number 10
	Chain of Thoughts – see cot.py in my code
	Limitations of CoT Reasoning
	ReAct Approach: Key Idea
	Approach
	Hackathon - Instructions
	Project: Maha Neta
	Problem - Example
	General Architecture (Non Agentic, Chain)
	Steps
	Data Preparation
	Write Code: DB creation
	Write Code: LLM Client
	Build a Chatbot using streamlit
	Write Code: Build DB execution runtime
	Write Code: Prompting for SQL
	OPTIONAL: Use ReAct framework
	Write Code: Develop the orchestrator
	Generate NL questions
	Integrate and Test

