Lab Session 1: Maha Neta

Palacode Narayana lyer Anantharaman
25t Oct 2024

What is System 2 Attention Prompting?

* Inspired by Cognitive Psychology: Modeled after System 2 thinking (slow,
deliberate, logical reasoning) vs. System 1 (fast, intuitive, automatic thinking).

* Encourages Deeper Reasoning: Prompts the LLM to engage in step-by-step,
reflective thought processes, leading to more accurate and logical responses.

* Moves Beyond Heuristics: Avoids quick, pattern-based answers by focusing on
explicit problem-solving and careful evaluation.

Key Characteristics of System 2 Prompting

» Task Decomposition: Breaks complex problems into smaller, manageable steps.

* lterative Reasoning: Revisits and refines intermediate conclusions before
finalizing.

e Attention to Detail: Focuses on precision, encouraging the model to check for
accuracy.

» Useful for Complex Tasks: Effective in scenarios requiring logical analysis, math, or
structured reasoning.

Prompt engineering: Zero shot inference

Classify the following text:
Great to see a successful

Classify the following text:
Great to see a successful

Chandrayan Mission! Chandrayan Mission!

* Prompt engineering: Providing a prompt that can get the best response

e Zero shot inference: Provide a well crafted prompt to the foundational LLM, use the response
from the model as the output. No additional training of the model is required

Prompt engineering: One shot inference

Classify the following text: Classify the following text:
Great to see a successful Great to see a successful
Chandrayan Mission! Chandrayan Mission!
Sentiment: Positive Sentiment: Positive

Classify the following text: Classify the following text:
The movie is boring ® The movie is boring ®
Sentiment: Sentiment:

* Prompt engineering: Providing a prompt that can get the best response

* One shot inference: Provide a well crafted prompt to the foundational LLM along
with one example, use the response from the model as the output. No
additional training of the model is required

Prompt engineering: Few shot inference

Classify the following text: Classify the following text:
Great to see a successful Great to see a successful
Chandrayan Mission! Chandrayan Mission!
Sentiment: Positive Sentiment: Positive
Classify the following text: Classify the following text:

The movie is boring ® The movie is boring ®
Sentiment: Negative Sentiment: Negative
Classify the following text: Classify the following text:
What an awesome match! What an awesome match!
Sentiment: Sentiment:

* Prompt engineering: Providing a prompt that can get the best response

* Few shot inference: Provide a well crafted prompt to the foundational LLM along
with a few examples, use the response from the model as the output. No
additional training of the model is required

Few shot learning

* The success of LLMs comes from their large size and ability to store “knowledge”
within the model parameter, which is learned during model training.

 However, there are more ways to pass knowledge to an LLM.

* The two primary methods are:

* Parametric knowledge — the knowledge mentioned above is anything that has been learned by
the model during training time and is stored within the model weights (or parameters).

* Source knowledge — any knowledge provided to the model at inference time via the input prompt.

* Langchain’s FewShotPromptTemplate caters to source knowledge input. The idea is to
“train” the model on a few examples — we call this few-shot learning — and these
examples are given to the model within the prompt

Example Prompt Structure

INSTRUCTIONS

- e e e e e = e e e e e e e e e e e e e - -

mmAster the queﬁt;m Eo-.se.ol on the context l:e_low. I‘P the

question connct be answered usinfr the inFormation pr‘oviole_ol answer
with "I dont know' .

—-TETsTTT TN

Context: J'_o..r?e, L.omguage, Models (LLMs) are the latest models used in NLP.
Their superior performance over swaller models has wade them increphb!y
useful for ole,ve,lope,rs Builolinsr NLP enabled apphc:a‘tions. These wmodels

con be accessed via Hugging Face's “tronsformers™ |1annf, Vio. OpenAL

using the “openai” Iibmry, and via. Cohere using the “cohere’ hbmt‘y.

Question: Which libraries and wmodel providers offer LLMs?
it PROMPTER INPUT

CONTEXTS
(EXTERNAL INFO)

————— =

Answer:

OUTPUT INDICATOR

A typical prompt structure.

Ref: https://www.pinecone.io/learn/series/langchain/langchain-prompt-templates/

Advanced Prompt Engineering

e Chain of Thoughts

* Tree of Thoughts

* Graph of Thoughts

* ReAct Agents

Chain-of-Thought Prompting Elicits Reasoning

in Large Language Models

Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma

Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou

Google Research, Brain Team
{jasonwei,dennyzhou}@google.com

Tree of Thoughts: Deliberate Problem Solving
with Large Language Models

Shunyu Yao Dian Yu Jeffrey Zhao Izhak Shafran
Princeton University Google DeepMind Google DeepMind Google DeepMind

Thomas L. Griffiths Yuan Cao Karthik Narasimhan
Princeton University Google DeepMind Princeton University
Abstract

Language models are increasingly being deployed for general problem solving
across a wide range of tasks, but are still confined to token-level, left-to-right
decision-making processes during inference. This means they can fall short in
tasks that require exploration, strategic lookahead, or where initial decisions play
a pivotal role. To surmount these challenges, we introduce a new framework for
language model inference, “Tree of Thoughts™ (ToT), which generalizes over the
popular “Chain of Thought™ approach to prompting language models, and enables
exploration over coherent units of text (“thoughts™) that serve as intermediate steps
toward problem solving. ToT allows LMs to perform deliberate decision making
by considering multiple different reasoning paths and self-evaluating choices to
decide the next course of action, as well as looking ahead or backtracking when
ssary to make global choices. Our experiments show that ToT significantly
language models’ problem-solving abilities on three novel tasks requiring
non- al planning or search: Game of 24, Creative Writing, and Mini Crosswords.
For instance, in Game of 24, while GPT-4 with chain-of-thought prompting only
solved 4% of tasks, our method achieved a success rate of 74%. Code repo with all
prompts: https://github.com/princeton-nlp/tree-of ~thought-11lm.

Published as a conference paper at ICLR 2023

REACT: SYNERGIZING REASONING AND ACTING IN
LANGUAGE MODELS

Shunyu Yao*!, Jeffrey Zhao?, Dian Yu?, Nan Du?, Izhak Shafran?, Karthik Narasimhan', Yuan Cao®

! Department of Computer Science, Princeton University
3 .
~Google Research, Brain team
! {shunyuy, karthikn}@princeton.edu
“{jeffreyzhao,dianyu, dunan, izhak, yuancao}@google.com

Published as a conference paper at ICLR 2023

SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT
REASONING IN LANGUAGE MODELS

Xuezhi Wang'? Jason Wei! Dale Schuurmans! Quoc Le! Ed H. Chi'
Sharan Narang’ Aakanksha Chowdhery'! Denny Zhou'®

IGoogle Research, Brain Team

txue zhiwl@google. com, %denny zhoullgoogle.com

Standard Prompting
| Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of

tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

. Model Output
A: The answer is 27. x

Chain-of-Thought (CoT) Prompting

| Chain-of-Thought Prompting
" Model Input |

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3+ 6 =9. The

answer is 9.

Chain of Thoughts — see cot.py in my code

Limitations of CoT Reasoning

. ... (]
e Chain-of-thought reasoning is intended to | (1) Hotspot QA |
combat reasoning errors. Question: Aside from the Apple Remote, what other
can control the program Apple Remote was originall
designed to interact with?
* Giving the LLM one or more examples (few-shot
. . . (la) Standard]—\
learning) and illustrating how to reason through
examples, helps to solve a different problem in Auimwer: 1Eog X

'y

a more accurate way.

/[(1b) CoT (Reason Only)]\

Thought: Let's think steg
. . . . by step. Bpple R E
 But it still suffers from hallucination, and oiigin;uypcfe:igj:; fowas
hallucinated “facts” can propagate through the interact with Apple TV.
reasoning, causing the model to come to the Apple TV can be controlled
wrong conclusion regardless. e e
SonelM So the answer is
iPhone, iPad, and iPod
Touch.
* ReAct aims to solve this issue by allowing the B -
LLM to take actions such as searching Wikipedia f‘f‘f‘er' SR e lEx/
\- uch

so that it can find facts and reason from those.
Yao et al. (2023)

ReAct Approach: Key |dea

- Actions
Reasoning ' :
o Traces I LM l Env
._____ ___'__/" [).

Observations

Reason Only

Act Only
Actions
B R
R .
easoning LM By
Traces
b\. h_‘_ - '
Observations

ReAct (Reason + Act)

Approach

1. An environment that takes a text action (out of a set of potential actions which can change based
on the environment’s internal state) and returns a text observation.

2. An output parser framework that stops the agent from generating text once it has written a valid
action, executes that action in the environment, and returns the observation (appends it to the
text generated so far and prompts the LLM with that).

3. Human-generated examples of intermixed thoughts, actions, and observations in the
environment to use for few-shot learning.

Hackathon - Instructions

* We will build this project step by step
* For each sub system, we will walk through a sample code and let you code
* You can do this in a team of 4.

* Please complete the dataset cleaning, database creation, basic LLM prompting to
generate SQL today. Please create a demo video and place it in the shared folder.

* You can submit the remaining by next session.

Project: Maha Neta

Build a GenAl based product to
analyze data from past general
elections and Maharashtra assembly
elections to help political strategists
for the upcoming Maharashtra state
elections.

We use the data from 2019, 2024
general elections and 2019
Maharashtra results for this project.

Data source: ECI

How India Voted in Lok Sabha Polls

Share of votes by constituency (%)

Constituancy won by

2@39 EJF ; of votes e 2@1%’
sy
e
4 "'F @ & . : o "
CONGRESS i 1 tl"
Ve o
@753 Ay
- . - - ;
- # DTHFHS

o DiU

Problem - Example

* Persona: You are the key strategist of party X, where X could be the ruling party. You want to list
all the constituencies you won in 2019, order them in terms of votes you got (descending order),
put them in to 3 categories: Large wins, medium wins and low margin wins.

* You want to analyze those constituencies that are low margin wins more in depth by looking at
assembly level granules, gender ratio and/or any other variable and identify them.

* Analyze all lost constituencies, determine if any of them are winnable this time. List them.

» Use visualizations (such as bar graphs, etc) to perform your analysis

General Architecture (Non Agentic, Chain)

SQL Output

Execution Processor Visualizer
Runtime LLM

Text Answetr,
NL Query Structured Results Code for Final
Query Visualization Output

Orchestrator

Can we use ReAct prompting here?

Steps

Data downloading (Uploaded in shared drive)

Data Preparation

Write the framework code

Develop Prompts

Evaluate

Data Preparation

The files are in .xls format, open them in MS Excel, save them as .xIsx. This will enable us to avoid
installing xlrd package and we can directly use pandas to read this file.

For the excel no 34, remove unwanted rows, ensure that the excel is a plain table.

Rename the column names as: state_name, constituency_number, constituency name,
assembly_constituency_number, assembly constituency _name, total_voters,
total_votes_in_state, nota_votes, candidate_name, party_name, secured_votes

* The purpose of renaming are 2 fold: (a) It is easy to write SQL with this schema (b) LLM can interpret these names
easier and can produce the SQL

You will find that some fields are empty in the votes_secured. Fill them with 0.

Save this file as .csv

Write Code: DB creation

* Write a function to save the csv data as a sqlite3 db. Name the db as “elections”
and table name as “elections _2019”

Write Code: LLM Client

* Run the LLM server using LMStudio as discussed during the earlier hands on

e Develop the client code get_completion(prompt) that takes a prompt as input
and returns the output returned by the server.

» Test the code by sending some test prompts and checking the results.

Build a Chatbot using streamlit

Streamlit is a library to create Ul on browser using Python.

Using streamlit components, it is easy to implement a chatbot in a few lines of code

Integrate the LLM with streamlit front end using get_completion() function.

Streamlit has necessary functions for charting and visualization so that one can build LLM driven
dashboards quickly

Review the front end code: my_chatbot.py, you can add necessary code for rich visualization like bar
charts etc.

Ref: https://github.com/streamlit/llm-examples/blob/main/Chatbot.py
Ref: https://docs.streamlit.io/develop/tutorials/lims/build-conversational-apps

https://github.com/streamlit/llm-examples/blob/main/Chatbot.py
https://docs.streamlit.io/develop/tutorials/llms/build-conversational-apps

Write Code: Build DB execution runtime

* Write a module that takes the query as input, execute the query on the given
database. You can chose SQL or MongoDB.

* Make sure that the LLM generated code doesn’t cause any harmful side effects,
such as deleting or corrupting any database record

Write Code: Prompting for SQL

* Review the questions and pick those that can be answered from the database
* Write prompts that take NL Query and Return SQL from the LLM

* Input should be through Chat GUI and SQL should be displayed in the GUI

OPTIONAL: Use ReAct framework

» ReAct is about using external tool to perform actions

e Canyou build a tool that can automatically execute SQL code, get the results, run
it again through LLM?

Write Code: Develop the orchestrator

* Now that all modules are coded and tested separately, build the
orchestrator that runs the workflow through all these modules.

Generate NL questions

* Using an LLM, auto generate about 25 questions
* These will be used as test cases.

* These questions should be turned in to suitable prompts using the
prompt templates

Integrate and Test

 Complete the end to end workflow: starting from questions, generating prompts
to the LLM, getting SQL code, running it, getting results from database, post
processing and visualizing the results

* You are required to develop and modify your prompts such that you get accurate
SQL code out of the LLM

* Evaluate against 25 test cases and report the results.

* Upload your work in the shared folder

	Lab Session 1: Maha Neta
	What is System 2 Attention Prompting?
	Key Characteristics of System 2 Prompting
	Prompt engineering: Zero shot inference
	Prompt engineering: One shot inference
	Prompt engineering: Few shot inference
	Few shot learning
	Example Prompt Structure
	Advanced Prompt Engineering
	Slide Number 10
	Chain of Thoughts – see cot.py in my code
	Limitations of CoT Reasoning
	ReAct Approach: Key Idea
	Approach
	Hackathon - Instructions
	Project: Maha Neta
	Problem - Example
	General Architecture (Non Agentic, Chain)
	Steps
	Data Preparation
	Write Code: DB creation
	Write Code: LLM Client
	Build a Chatbot using streamlit
	Write Code: Build DB execution runtime
	Write Code: Prompting for SQL
	OPTIONAL: Use ReAct framework
	Write Code: Develop the orchestrator
	Generate NL questions
	Integrate and Test

