Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,66 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
import os
|
4 |
+
import openai
|
5 |
|
6 |
+
# Set OpenAI key
|
7 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
8 |
|
9 |
+
pdf_text = ""
|
10 |
|
11 |
+
def extract_text_from_pdf(pdf_file):
|
12 |
+
reader = PdfReader(pdf_file)
|
13 |
+
text = ""
|
14 |
+
for page in reader.pages:
|
15 |
+
text += page.extract_text() or ""
|
16 |
+
return text
|
|
|
|
|
|
|
17 |
|
18 |
+
def process_pdf(pdf):
|
19 |
+
global pdf_text
|
20 |
+
pdf_text = extract_text_from_pdf(pdf)
|
21 |
+
return "PDF loaded! Ask anything about it."
|
|
|
22 |
|
23 |
+
def chat_with_pdf(question):
|
24 |
+
if not pdf_text:
|
25 |
+
return "Please upload and process a PDF first."
|
26 |
+
|
27 |
+
prompt = f"""You are a helpful assistant. The user uploaded a PDF document. Here's its content:
|
28 |
|
29 |
+
--- BEGIN DOCUMENT ---
|
30 |
+
{pdf_text}
|
31 |
+
--- END DOCUMENT ---
|
32 |
|
33 |
+
Now, answer the following question based on the document:
|
34 |
+
Q: {question}
|
35 |
+
A:"""
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
response = openai.ChatCompletion.create(
|
38 |
+
model="gpt-3.5-turbo", # or "gpt-4"
|
39 |
+
messages=[
|
40 |
+
{"role": "system", "content": "You are a helpful assistant that answers questions about uploaded PDFs."},
|
41 |
+
{"role": "user", "content": prompt}
|
42 |
+
],
|
43 |
+
max_tokens=500,
|
44 |
+
temperature=0.3,
|
45 |
+
)
|
46 |
|
47 |
+
return response.choices[0].message["content"]
|
48 |
|
49 |
+
with gr.Blocks() as demo:
|
50 |
+
gr.Markdown("## 🤖 Chat with your PDF (No Chunking, No Embeddings)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
with gr.Row():
|
53 |
+
pdf_file = gr.File(label="Upload your PDF", file_types=[".pdf"])
|
54 |
+
load_button = gr.Button("Load PDF")
|
55 |
|
56 |
+
status = gr.Textbox(label="Status")
|
57 |
+
|
58 |
+
with gr.Row():
|
59 |
+
question = gr.Textbox(label="Your Question")
|
60 |
+
answer = gr.Textbox(label="Answer", lines=10)
|
61 |
+
ask_button = gr.Button("Ask")
|
62 |
+
|
63 |
+
load_button.click(process_pdf, inputs=pdf_file, outputs=status)
|
64 |
+
ask_button.click(chat_with_pdf, inputs=question, outputs=answer)
|
65 |
+
|
66 |
+
demo.launch()
|