ankurkaul17 commited on
Commit
20094d3
·
verified ·
1 Parent(s): 0dd488b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -51
app.py CHANGED
@@ -1,64 +1,66 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from PyPDF2 import PdfReader
3
+ import os
4
+ import openai
5
 
6
+ # Set OpenAI key
7
+ openai.api_key = os.getenv("OPENAI_API_KEY")
 
 
8
 
9
+ pdf_text = ""
10
 
11
+ def extract_text_from_pdf(pdf_file):
12
+ reader = PdfReader(pdf_file)
13
+ text = ""
14
+ for page in reader.pages:
15
+ text += page.extract_text() or ""
16
+ return text
 
 
 
17
 
18
+ def process_pdf(pdf):
19
+ global pdf_text
20
+ pdf_text = extract_text_from_pdf(pdf)
21
+ return "PDF loaded! Ask anything about it."
 
22
 
23
+ def chat_with_pdf(question):
24
+ if not pdf_text:
25
+ return "Please upload and process a PDF first."
26
+
27
+ prompt = f"""You are a helpful assistant. The user uploaded a PDF document. Here's its content:
28
 
29
+ --- BEGIN DOCUMENT ---
30
+ {pdf_text}
31
+ --- END DOCUMENT ---
32
 
33
+ Now, answer the following question based on the document:
34
+ Q: {question}
35
+ A:"""
 
 
 
 
 
36
 
37
+ response = openai.ChatCompletion.create(
38
+ model="gpt-3.5-turbo", # or "gpt-4"
39
+ messages=[
40
+ {"role": "system", "content": "You are a helpful assistant that answers questions about uploaded PDFs."},
41
+ {"role": "user", "content": prompt}
42
+ ],
43
+ max_tokens=500,
44
+ temperature=0.3,
45
+ )
46
 
47
+ return response.choices[0].message["content"]
48
 
49
+ with gr.Blocks() as demo:
50
+ gr.Markdown("## 🤖 Chat with your PDF (No Chunking, No Embeddings)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
+ with gr.Row():
53
+ pdf_file = gr.File(label="Upload your PDF", file_types=[".pdf"])
54
+ load_button = gr.Button("Load PDF")
55
 
56
+ status = gr.Textbox(label="Status")
57
+
58
+ with gr.Row():
59
+ question = gr.Textbox(label="Your Question")
60
+ answer = gr.Textbox(label="Answer", lines=10)
61
+ ask_button = gr.Button("Ask")
62
+
63
+ load_button.click(process_pdf, inputs=pdf_file, outputs=status)
64
+ ask_button.click(chat_with_pdf, inputs=question, outputs=answer)
65
+
66
+ demo.launch()