ToDo / app.py
aningineer's picture
Upload folder using huggingface_hub
5c4b5eb verified
raw
history blame
4.98 kB
import time
import gradio as gr
import torch
import diffusers
from utils import patch_attention_proc
import math
import numpy as np
from PIL import Image
pipe = diffusers.StableDiffusionPipeline.from_pretrained("Lykon/DreamShaper").to("cuda", torch.float16)
pipe.enable_xformers_memory_efficient_attention()
pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.safety_checker = None
with gr.Blocks() as demo:
prompt = gr.Textbox(interactive=True, label="prompt")
negative_prompt = gr.Textbox(interactive=True, label="negative_prompt")
method = gr.Dropdown(["todo", "tome"], value="todo", label="method", info="Choose Your Desired Method (Default: todo)")
height_width = gr.Dropdown([1024, 1536, 2048], value=1024, label="height/width", info="Choose Your Desired Height/Width (Default: 1024)")
# height = gr.Number(label="height", value=1024, precision=0)
# width = gr.Number(label="width", value=1024, precision=0)
guidance_scale = gr.Number(label="guidance_scale", value=7.5, precision=1)
steps = gr.Number(label="steps", value=20, precision=0)
seed = gr.Number(label="seed", value=1, precision=0)
result = gr.Textbox(label="Result")
output_image = gr.Image(label=f"output_image", type="pil", interactive=False)
gen = gr.Button("generate")
def which_image(img, target_val=253, width=1024):
npimg = np.array(img)
loc = np.where(npimg[:, :, 3] == target_val)[1].item()
if loc > width:
print("Right Image is merged!")
else:
print("Left Image is merged!")
def generate(prompt, seed, steps, height_width, negative_prompt, guidance_scale, method):
pipe.enable_xformers_memory_efficient_attention()
downsample_factor = 2
ratio = 0.38
merge_method = "downsample" if method == "todo" else "similarity"
merge_tokens = "keys/values" if method == "todo" else "all"
if height_width == 1024:
downsample_factor = 2
ratio = 0.75
downsample_factor_level_2 = 1
ratio_level_2 = 0.0
elif height_width == 1536:
downsample_factor = 3
ratio = 0.89
downsample_factor_level_2 = 1
ratio_level_2 = 0.0
elif height_width == 2048:
downsample_factor = 4
ratio = 0.9375
downsample_factor_level_2 = 2
ratio_level_2 = 0.75
token_merge_args = {"ratio": ratio,
"merge_tokens": merge_tokens,
"merge_method": merge_method,
"downsample_method": "nearest",
"downsample_factor": downsample_factor,
"timestep_threshold_switch": 0.0,
"timestep_threshold_stop": 0.0,
"downsample_factor_level_2": downsample_factor_level_2,
"ratio_level_2": ratio_level_2
}
l_r = torch.rand(1).item()
torch.manual_seed(seed)
start_time_base = time.time()
base_img = pipe(prompt,
num_inference_steps=steps, height=height_width, width=height_width,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale).images[0]
end_time_base = time.time()
patch_attention_proc(pipe.unet, token_merge_args=token_merge_args)
torch.manual_seed(seed)
start_time_merge = time.time()
merged_img = pipe(prompt,
num_inference_steps=steps, height=height_width, width=height_width,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale).images[0]
end_time_merge = time.time()
base_img = base_img.convert("RGBA")
merged_img = merged_img.convert("RGBA")
merged_img = np.array(merged_img)
halfh, halfw = height_width // 2, height_width // 2
merged_img[halfh, halfw, 3] = 253 # set the center pixel of the merged image to be ever so slightly below 255 in alpha channel
merged_img = Image.fromarray(merged_img)
final_img = Image.new(size=(height_width * 2, height_width), mode="RGBA")
if l_r > 0.5:
left_img = base_img
right_img = merged_img
else:
left_img = merged_img
right_img = base_img
final_img.paste(left_img, (0, 0))
final_img.paste(right_img, (height_width, 0))
which_image(final_img, width=height_width)
result = f"Baseline image: {end_time_base-start_time_base:.2f} sec | {'ToDo' if method == 'todo' else 'ToMe'} image: {end_time_merge-start_time_merge:.2f} sec"
return final_img, result
gen.click(generate, inputs=[prompt, seed, steps, height_width, negative_prompt,
guidance_scale, method], outputs=[output_image, result])
demo.launch(share=True)