File size: 5,967 Bytes
1a14066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from lora_diffusion.cli_lora_add import *
from lora_diffusion.lora import *
from lora_diffusion.to_ckpt_v2 import *

def monkeypatch_or_replace_safeloras(models, safeloras):
    loras = parse_safeloras(safeloras)

    for name, (lora, ranks, target) in loras.items():
        model = getattr(models, name, None)

        if not model:
            print(f"No model provided for {name}, contained in Lora")
            continue

        monkeypatch_or_replace_lora_extended(model, lora, target, ranks)
def parse_safeloras(
    safeloras,
) -> Dict[str, Tuple[List[nn.parameter.Parameter], List[int], List[str]]]:
    """
    Converts a loaded safetensor file that contains a set of module Loras
    into Parameters and other information

    Output is a dictionary of {
        "module name": (
            [list of weights],
            [list of ranks],
            target_replacement_modules
        )
    }
    """
    loras = {}
    # metadata = safeloras.metadata()
    metadata = safeloras['metadata']
    safeloras_ = safeloras['weights']
    get_name = lambda k: k.split(":")[0]

    keys = list(safeloras_.keys())
    keys.sort(key=get_name)

    for name, module_keys in groupby(keys, get_name):
        info = metadata.get(name)

        if not info:
            raise ValueError(
                f"Tensor {name} has no metadata - is this a Lora safetensor?"
            )

        # Skip Textual Inversion embeds
        if info == EMBED_FLAG:
            continue

        # Handle Loras
        # Extract the targets
        target = json.loads(info)

        # Build the result lists - Python needs us to preallocate lists to insert into them
        module_keys = list(module_keys)
        ranks = [4] * (len(module_keys) // 2)
        weights = [None] * len(module_keys)

        for key in module_keys:
            # Split the model name and index out of the key
            _, idx, direction = key.split(":")
            idx = int(idx)

            # Add the rank
            ranks[idx] = int(metadata[f"{name}:{idx}:rank"])

            # Insert the weight into the list
            idx = idx * 2 + (1 if direction == "down" else 0)
            # weights[idx] = nn.parameter.Parameter(safeloras.get_tensor(key))
            weights[idx] = nn.parameter.Parameter(safeloras_[key])
        loras[name] = (weights, ranks, target)

    return loras


def parse_safeloras_embeds(
    safeloras,
) -> Dict[str, torch.Tensor]:
    """
    Converts a loaded safetensor file that contains Textual Inversion embeds into
    a dictionary of embed_token: Tensor
    """
    embeds = {}
    metadata = safeloras['metadata']
    safeloras_ = safeloras['weights']
    
    for key in safeloras_.keys():
        # Only handle Textual Inversion embeds
        meta=None
        if key in metadata:
            meta = metadata[key]
        if not meta or meta != EMBED_FLAG:
            continue

        embeds[key] = safeloras_[key]

    return embeds

def patch_pipe(
    pipe,
    maybe_unet_path,
    token: Optional[str] = None,
    r: int = 4,
    patch_unet=True,
    patch_text=True,
    patch_ti=True,
    idempotent_token=True,
    unet_target_replace_module=DEFAULT_TARGET_REPLACE,
    text_target_replace_module=TEXT_ENCODER_DEFAULT_TARGET_REPLACE,
):
    safeloras=maybe_unet_path
    monkeypatch_or_replace_safeloras(pipe, safeloras)
    tok_dict = parse_safeloras_embeds(safeloras)

    if patch_ti:
        apply_learned_embed_in_clip(
            tok_dict,
            pipe.text_encoder,
            pipe.tokenizer,
            token=token,
            idempotent=idempotent_token,
        )
    return tok_dict
    
def lora_convert(model_path, as_half):
    
    """
    Modified version of lora_duffusion.to_ckpt_v2.convert_to_ckpt
    """

    assert model_path is not None, "Must provide a model path!"

    unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
    vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
    text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")

    # Convert the UNet model
    unet_state_dict = torch.load(unet_path, map_location="cpu")
    unet_state_dict = convert_unet_state_dict(unet_state_dict)
    unet_state_dict = {
        "model.diffusion_model." + k: v for k, v in unet_state_dict.items()
    }

    # Convert the VAE model
    vae_state_dict = torch.load(vae_path, map_location="cpu")
    vae_state_dict = convert_vae_state_dict(vae_state_dict)
    vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}

    # Convert the text encoder model
    text_enc_dict = torch.load(text_enc_path, map_location="cpu")
    text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
    text_enc_dict = {
        "cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()
    }

    # Put together new checkpoint
    state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
    if as_half:
        state_dict = {k: v.half() for k, v in state_dict.items()}
    
    return state_dict

def merge(path_1: str,
    path_2: str,
    alpha_1: float = 0.5,
    ):

    loaded_pipeline = StableDiffusionPipeline.from_pretrained(
        path_1,
    ).to("cpu")

    tok_dict = patch_pipe(loaded_pipeline, path_2, patch_ti=False)
    collapse_lora(loaded_pipeline.unet, alpha_1)
    collapse_lora(loaded_pipeline.text_encoder, alpha_1)

    monkeypatch_remove_lora(loaded_pipeline.unet)
    monkeypatch_remove_lora(loaded_pipeline.text_encoder)
    
    _tmp_output = "./merge.tmp"

    loaded_pipeline.save_pretrained(_tmp_output)
    state_dict = lora_convert(_tmp_output, as_half=True)
    # remove the tmp_output folder
    shutil.rmtree(_tmp_output)

    keys = sorted(tok_dict.keys())
    tok_catted = torch.stack([tok_dict[k] for k in keys])
    ret = {
        "string_to_token": {"*": torch.tensor(265)},
        "string_to_param": {"*": tok_catted},
        "name": "",
    }

    return state_dict, ret