Andrew Lai
commited on
Commit
·
61ac6e5
1
Parent(s):
5848cc6
init
Browse files- .gitattributes +2 -0
- Dockerfile +13 -0
- README.md +4 -4
- app.py +109 -0
- data.csv +3 -0
- key.env +3 -0
- pre-requirements.txt +2 -0
- requirements.txt +16 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.psd filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11
|
2 |
+
RUN useradd -m -u 1000 user
|
3 |
+
USER user
|
4 |
+
ENV HOME=/home/user \
|
5 |
+
PATH=/home/user/.local/bin:$PATH
|
6 |
+
WORKDIR $HOME/app
|
7 |
+
COPY --chown=user . $HOME/app
|
8 |
+
COPY ./pre-requirements.txt ~/app/pre-requirements.txt
|
9 |
+
RUN pip install -r ~/app/pre-requirements.txt
|
10 |
+
COPY ./requirements.txt ~/app/requirements.txt
|
11 |
+
RUN pip install -r ~/app/requirements.txt
|
12 |
+
COPY . .
|
13 |
+
CMD ["chainlit", "run", "app.py", "--port", "7862"]
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
+
title: Proj2rag
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
license: apache-2.0
|
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from huggingface_hub import list_datasets
|
3 |
+
from google.colab import userdata
|
4 |
+
from langchain import OpenAI, LLMMathChain, SerpAPIWrapper
|
5 |
+
from langchain.agents import initialize_agent, Tool, AgentExecutor
|
6 |
+
from langchain_community.chat_models import ChatOpenAI
|
7 |
+
import os
|
8 |
+
import chainlit as cl
|
9 |
+
import openai
|
10 |
+
from google.colab import userdata
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
from langchain_community.document_loaders import TextLoader
|
13 |
+
from langchain_community.document_loaders.csv_loader import CSVLoader
|
14 |
+
from langchain_community.vectorstores import FAISS
|
15 |
+
from langchain.storage import LocalFileStore
|
16 |
+
from langchain.prompts import ChatPromptTemplate
|
17 |
+
from langchain_openai import ChatOpenAI
|
18 |
+
from langchain.schema.runnable import RunnableMap
|
19 |
+
from langchain.schema.output_parser import StrOutputParser
|
20 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
21 |
+
from langchain.output_parsers import ResponseSchema, StructuredOutputParser
|
22 |
+
import pandas as pd
|
23 |
+
from langchain_openai import OpenAIEmbeddings
|
24 |
+
import openai
|
25 |
+
import asyncio
|
26 |
+
from dotenv import dotenv_values
|
27 |
+
|
28 |
+
# get keys
|
29 |
+
my_secrets = dotenv_values("key.env")
|
30 |
+
|
31 |
+
#load the csv
|
32 |
+
loader = TextLoader('data.csv')
|
33 |
+
documents = loader.load()
|
34 |
+
|
35 |
+
#split using recursive text splitter
|
36 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
37 |
+
chunk_size=1000,
|
38 |
+
chunk_overlap=100,
|
39 |
+
length_function=len,
|
40 |
+
is_separator_regex=False,
|
41 |
+
)
|
42 |
+
|
43 |
+
docs = text_splitter.split_documents(documents)
|
44 |
+
|
45 |
+
# create embeddings
|
46 |
+
underlying_embeddings = OpenAIEmbeddings(model="text-embedding-ada-002",api_key=my_secrets["OPEN_API_KEY"])
|
47 |
+
db = FAISS.from_documents(docs, underlying_embeddings)
|
48 |
+
|
49 |
+
# Get the retriever for the Chat Model
|
50 |
+
retriever = db.as_retriever(
|
51 |
+
search_kwargs={"k": 10}
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
@cl.on_chat_start
|
56 |
+
def start():
|
57 |
+
|
58 |
+
# Create the prompt template make sure it doesn't return data not in rag
|
59 |
+
template = """
|
60 |
+
You're a helpful AI assistent tasked to answer the user's questions about movies.
|
61 |
+
You can only make conversations based on the provided context about movies. If a response cannot be formed strictly using the context, politely say you don’t have knowledge about that topic under new line character 'ANSWER:' tag which is prefixed with new line character.
|
62 |
+
|
63 |
+
Remember, you must return both an answer under 'ANSWER:' tag which is prefixed with new line character and citations in line separated format of answer and bulleted list of citiations under 'CITATIONS:' tag. A citation consists of a VERBATIM quote that \
|
64 |
+
justifies the answer and the ID of the quoted article. Return a citation for every quote across all articles \
|
65 |
+
that justify the answer. Add a new line character after all citations. Use the following format for your final output:
|
66 |
+
|
67 |
+
new line character
|
68 |
+
ANSWER:
|
69 |
+
|
70 |
+
CITATIONS:
|
71 |
+
new line character
|
72 |
+
|
73 |
+
CONTEXT:
|
74 |
+
{context}
|
75 |
+
|
76 |
+
QUESTION: {question}
|
77 |
+
|
78 |
+
YOUR ANSWER:
|
79 |
+
"""
|
80 |
+
|
81 |
+
prompt = ChatPromptTemplate.from_messages([("system", template)])
|
82 |
+
|
83 |
+
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0, api_key=my_secrets["OPEN_API_KEY"])
|
84 |
+
|
85 |
+
# Define the chain
|
86 |
+
inputs = RunnableMap({
|
87 |
+
'context': lambda x: retriever.get_relevant_documents(x['question']),
|
88 |
+
'question': lambda x: x['question']
|
89 |
+
})
|
90 |
+
|
91 |
+
#create runnable chain
|
92 |
+
runnable_chain = (
|
93 |
+
inputs |
|
94 |
+
prompt |
|
95 |
+
llm |
|
96 |
+
StrOutputParser()
|
97 |
+
)
|
98 |
+
cl.user_session.set("runnable_chain", runnable_chain)
|
99 |
+
|
100 |
+
|
101 |
+
@cl.on_message
|
102 |
+
async def on_message(message: cl.Message):
|
103 |
+
runnable_chain = cl.user_session.get("runnable_chain")
|
104 |
+
msg = message.content
|
105 |
+
|
106 |
+
result = runnable_chain.invoke({"question": msg})
|
107 |
+
|
108 |
+
#print(str(result))
|
109 |
+
await cl.Message(content=result).send()
|
data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4adc33bd9fe74303c344be46e5916d65182fb218e248fe80452ab3f025b06c64
|
3 |
+
size 2
|
key.env
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
HF_TOKEN=
|
2 |
+
NGROK_KEY=
|
3 |
+
OPEN_API_KEY=
|
pre-requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pip>=23.2
|
2 |
+
gradio_client==0.2.7
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
chainlit
|
3 |
+
langchain-openai
|
4 |
+
openai
|
5 |
+
chromadb
|
6 |
+
tiktoken
|
7 |
+
pymupdf
|
8 |
+
datasets
|
9 |
+
langchain_community
|
10 |
+
chainlit
|
11 |
+
pyngrok
|
12 |
+
openai
|
13 |
+
google-search-results
|
14 |
+
optimum
|
15 |
+
auto-gptq
|
16 |
+
faiss-gpu
|